Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Development ; 138(18): 4063-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21862563

RESUMO

Much of our knowledge about mammalian evolution comes from examination of dental fossils, because the highly calcified enamel that covers teeth causes them to be among the best-preserved organs. As mammals entered new ecological niches, many changes in tooth number occurred, presumably as adaptations to new diets. For example, in contrast to humans, who have two incisors in each dental quadrant, rodents only have one incisor per quadrant. The rodent incisor, because of its unusual morphogenesis and remarkable stem cell-based continuous growth, presents a quandary for evolutionary biologists, as its origin in the fossil record is difficult to trace, and the genetic regulation of incisor number remains a largely open question. Here, we studied a series of mice carrying mutations in sprouty genes, the protein products of which are antagonists of receptor-tyrosine kinase signaling. In sprouty loss-of-function mutants, splitting of gene expression domains and reduced apoptosis was associated with subdivision of the incisor primordium and a multiplication of its stem cell-containing regions. Interestingly, changes in sprouty gene dosage led to a graded change in incisor number, with progressive decreases in sprouty dosage leading to increasing numbers of teeth. Moreover, the independent development of two incisors in mutants with large decreases in sprouty dosage mimicked the likely condition of rodent ancestors. Together, our findings indicate that altering genetic dosage of an antagonist can recapitulate ancestral dental characters, and that tooth number can be progressively regulated by changing levels of activity of a single signal transduction pathway.


Assuntos
Receptores Proteína Tirosina Quinases/fisiologia , Dente/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Embrião de Mamíferos , Feminino , Dosagem de Genes/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Odontogênese/genética , Odontogênese/fisiologia , Gravidez , Proteínas Serina-Treonina Quinases , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Dente/anatomia & histologia , Dente/metabolismo , Dente Supranumerário/genética
2.
Wiley Interdiscip Rev Dev Biol ; 2(2): 165-82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24009032

RESUMO

Teeth are unique to vertebrates and have played a central role in their evolution. The molecular pathways and morphogenetic processes involved in tooth development have been the focus of intense investigation over the past few decades, and the tooth is an important model system for many areas of research. Developmental biologists have exploited the clear distinction between the epithelium and the underlying mesenchyme during tooth development to elucidate reciprocal epithelial/mesenchymal interactions during organogenesis. The preservation of teeth in the fossil record makes these organs invaluable for the work of paleontologists, anthropologists, and evolutionary biologists. In addition, with the recent identification and characterization of dental stem cells, teeth have become of interest to the field of regenerative medicine. Here, we review the major research areas and studies in the development and evolution of teeth, including morphogenesis, genetics and signaling, evolution of tooth development, and dental stem cells.


Assuntos
Redes e Vias Metabólicas , Morfogênese/genética , Odontogênese/genética , Dente/crescimento & desenvolvimento , Animais , Evolução Biológica , Epitélio/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Mastigação/genética , Mesoderma/crescimento & desenvolvimento , Células-Tronco/citologia , Dente/metabolismo
3.
Tissue Eng Part C Methods ; 19(1): 15-24, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22742471

RESUMO

Dental epithelial stem cells (DESCs) drive continuous growth in the adult mouse incisors. To date, a robust system for the primary culture of these cells has not been reported, and little is known about the basic molecular architecture of these cells or the minimal extracellular scaffolding that is necessary to maintain the epithelial stem cell population in an undifferentiated state. We report a method of isolating DESCs from the cervical loop of the mouse mandibular incisor. Cells were viable in a two-dimensional culture system and did not demonstrate preferential proliferation when grown on top of various substrates. Characterization of these cells indicated that E-cadherin, integrin alpha-6, and integrin beta-4 mark the DESCs both in vivo and in vitro. We also grew these cells in a three-dimensional microenvironment and obtained spheres with an epithelial morphology and expression patterns. Insights into the mechanisms of stem cell maintenance in vitro will help lay the groundwork for the successful generation of bioengineered teeth from adult DESCs.


Assuntos
Técnicas de Cultura de Células/métodos , Células Epiteliais/citologia , Incisivo/citologia , Células-Tronco/citologia , Animais , Adesão Celular , Proliferação de Células , Junções Célula-Matriz/metabolismo , Células Cultivadas , Junções Intercelulares/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
4.
Nat Cell Biol ; 15(7): 846-52, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23728424

RESUMO

The polycomb group gene Bmi1 is required for maintenance of adult stem cells in many organs. Inactivation of Bmi1 leads to impaired stem cell self-renewal due to deregulated gene expression. One critical target of BMI1 is Ink4a/Arf, which encodes the cell-cycle inhibitors p16(Ink4a) and p19(Arf). However, deletion of Ink4a/Arf only partially rescues Bmi1-null phenotypes, indicating that other important targets of BMI1 exist. Here, using the continuously growing mouse incisor as a model system, we report that Bmi1 is expressed by incisor stem cells and that deletion of Bmi1 resulted in fewer stem cells, perturbed gene expression and defective enamel production. Transcriptional profiling revealed that Hox expression is normally repressed by BMI1 in the adult, and functional assays demonstrated that BMI1-mediated repression of Hox genes preserves the undifferentiated state of stem cells. As Hox gene upregulation has also been reported in other systems when Bmi1 is inactivated, our findings point to a general mechanism whereby BMI1-mediated repression of Hox genes is required for the maintenance of adult stem cells and for prevention of inappropriate differentiation.


Assuntos
Fatores de Ribosilação do ADP/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/fisiologia , Esmalte Dentário/citologia , Genes Homeobox/fisiologia , Incisivo/citologia , Complexo Repressor Polycomb 1/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Células Cultivadas , Esmalte Dentário/metabolismo , Incisivo/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco/metabolismo
5.
PLoS One ; 7(5): e37670, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629441

RESUMO

Mouse incisors grow continuously throughout life with enamel deposition uniquely on the outer, or labial, side of the tooth. Asymmetric enamel deposition is due to the presence of enamel-secreting ameloblasts exclusively within the labial epithelium of the incisor. We have previously shown that mice lacking the transcription factor BCL11B/CTIP2 (BCL11B hereafter) exhibit severely disrupted ameloblast formation in the developing incisor. We now report that BCL11B is a key factor controlling epithelial proliferation and overall developmental asymmetry of the mouse incisor: BCL11B is necessary for proliferation of the labial epithelium and development of the epithelial stem cell niche, which gives rise to ameloblasts; conversely, BCL11B suppresses epithelial proliferation, and development of stem cells and ameloblasts on the inner, or lingual, side of the incisor. This bidirectional action of BCL11B in the incisor epithelia appears responsible for the asymmetry of ameloblast localization in developing incisor. Underlying these spatio-specific functions of BCL11B in incisor development is the regulation of a large gene network comprised of genes encoding several members of the FGF and TGFß superfamilies, Sprouty proteins, and Sonic hedgehog. Our data integrate BCL11B into these pathways during incisor development and reveal the molecular mechanisms that underlie phenotypes of both Bcl11b(-/-) and Sprouty mutant mice.


Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Incisivo/crescimento & desenvolvimento , Mandíbula/crescimento & desenvolvimento , Odontogênese/fisiologia , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ameloblastos/metabolismo , Animais , Apoptose/fisiologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Incisivo/metabolismo , Mandíbula/metabolismo , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética , Nicho de Células-Tronco , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA