Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Biol Chem ; 299(5): 104655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990218

RESUMO

Enzymatic deconstruction of lignocellulosic biomass is crucial to establishment of the renewable biofuel and bioproduct economy. Better understanding of these enzymes, including their catalytic and binding domains, and other features offer potential avenues for improvement. Glycoside hydrolase family 9 (GH9) enzymes are attractive targets because they have members that exhibit exo- and endo-cellulolytic activity, processivity of reaction, and thermostability. This study examines a GH9 from Acetovibrio thermocellus ATCC 27405, AtCelR containing a catalytic domain and a carbohydrate binding module (CBM3c). Crystal structures of the enzyme without substrate, bound to cellohexaose (substrate) or cellobiose (product), show the positioning of ligands to calcium and adjacent residues in the catalytic domain that may contribute to substrate binding and facilitate product release. We also investigated the properties of the enzyme engineered to contain an additional carbohydrate binding module (CBM3a). Relative to the catalytic domain alone, CBM3a gave improved binding for Avicel (a crystalline form of cellulose), and catalytic efficiency (kcat/KM) was improved 40× with both CBM3c and CBM3a present. However, because of the molecular weight added by CBM3a, the specific activity of the engineered enzyme was not increased relative to the native construct consisting of only the catalytic and CBM3c domains. This work provides new insight into a potential role of the conserved calcium in the catalytic domain and identifies contributions and limitations of domain engineering for AtCelR and perhaps other GH9 enzymes.


Assuntos
Cálcio , Celulase , Cálcio/metabolismo , Domínio Catalítico , Celulase/química , Celulase/metabolismo , Celulose/química , Celulose/metabolismo , Especificidade por Substrato , Ligantes , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Domínios Proteicos
2.
Chembiochem ; 24(9): e202300001, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36821718

RESUMO

Chemically labile ester linkages can be introduced into lignin by incorporation of monolignol conjugates, which are synthesized in planta by acyltransferases that use a coenzyme A (CoA) thioester donor and a nucleophilic monolignol alcohol acceptor. The presence of these esters facilitates processing and aids in the valorization of renewable biomass feedstocks. However, the effectiveness of this strategy is potentially limited by the low steady-state levels of aromatic acid thioester donors in plants. As part of an effort to overcome this, aromatic acid CoA ligases involved in microbial aromatic degradation were identified and screened against a broad panel of substituted cinnamic and benzoic acids involved in plant lignification. Functional fingerprinting of this ligase library identified four robust, highly active enzymes capable of facile, rapid, and high-yield synthesis of aromatic acid CoA thioesters under mild aqueous reaction conditions mimicking in planta activity.


Assuntos
Coenzima A Ligases , Ligases , Coenzima A Ligases/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Ésteres
3.
Plant Physiol ; 188(2): 1014-1027, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34977949

RESUMO

Poplar (Populus) lignin is naturally acylated with p-hydroxybenzoate ester moieties. However, the enzyme(s) involved in the biosynthesis of the monolignol-p-hydroxybenzoates have remained largely unknown. Here, we performed an in vitro screen of the Populus trichocarpa BAHD acyltransferase superfamily (116 genes) using a wheatgerm cell-free translation system and found five enzymes capable of producing monolignol-p-hydroxybenzoates. We then compared the transcript abundance of the five corresponding genes with p-hydroxybenzoate concentrations using naturally occurring unrelated genotypes of P. trichocarpa and revealed a positive correlation between the expression of p-hydroxybenzoyl-CoA monolig-nol transferase (pHBMT1, Potri.001G448000) and p-hydroxybenzoate levels. To test whether pHBMT1 is responsible for the biosynthesis of monolignol-p-hydroxybenzoates, we overexpressed pHBMT1 in hybrid poplar (Populus alba × P. grandidentata) (35S::pHBMT1 and C4H::pHBMT1). Using three complementary analytical methods, we showed that there was an increase in soluble monolignol-p-hydroxybenzoates and cell-wall-bound monolignol-p-hydroxybenzoates in the poplar transgenics. As these pendent groups are ester-linked, saponification releases p-hydroxybenzoate, a precursor to parabens that are used in pharmaceuticals and cosmetics. This identified gene could therefore be used to engineer lignocellulosic biomass with increased value for emerging biorefinery strategies.


Assuntos
Acilação/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Lignina/biossíntese , Lignina/genética , Populus/genética , Populus/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas
4.
Plant Physiol ; 189(1): 37-48, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35134228

RESUMO

Plant BAHD acyltransferases perform a wide range of enzymatic tasks in primary and secondary metabolism. Acyl-CoA monolignol transferases, which couple a CoA substrate to a monolignol creating an ester linkage, represent a more recent class of such acyltransferases. The resulting conjugates may be used for plant defense but are also deployed as important "monomers" for lignification, in which they are incorporated into the growing lignin polymer chain. p-Coumaroyl-CoA monolignol transferases (PMTs) increase the production of monolignol p-coumarates, and feruloyl-CoA monolignol transferases (FMTs) catalyze the production of monolignol ferulate conjugates. We identified putative FMT and PMT enzymes in sorghum (Sorghum bicolor) and switchgrass (Panicum virgatum) and have compared their activities to those of known monolignol transferases. The putative FMT enzymes produced both monolignol ferulate and monolignol p-coumarate conjugates, whereas the putative PMT enzymes produced monolignol p-coumarate conjugates. Enzyme activity measurements revealed that the putative FMT enzymes are not as efficient as the rice (Oryza sativa) control OsFMT enzyme under the conditions tested, but the SbPMT enzyme is as active as the control OsPMT enzyme. These putative FMTs and PMTs were transformed into Arabidopsis (Arabidopsis thaliana) to test their activities and abilities to biosynthesize monolignol conjugates for lignification in planta. The presence of ferulates and p-coumarates on the lignin of these transformants indicated that the putative FMTs and PMTs act as functional feruloyl-CoA and p-coumaroyl-CoA monolignol transferases within plants.


Assuntos
Arabidopsis , Oryza , Panicum , Sorghum , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Lignina/metabolismo , Oryza/metabolismo , Panicum/metabolismo , Sorghum/genética , Sorghum/metabolismo , Transferases
5.
J Biol Chem ; 293(14): 4955-4968, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29449375

RESUMO

As a major component of plant cell walls, lignin is a potential renewable source of valuable chemicals. Several sphingomonad bacteria have been identified that can break the ß-aryl ether bond connecting most phenylpropanoid units of the lignin heteropolymer. Here, we tested three sphingomonads predicted to be capable of breaking the ß-aryl ether bond of the dimeric aromatic compound guaiacylglycerol-ß-guaiacyl ether (GGE) and found that Novosphingobium aromaticivorans metabolizes GGE at one of the fastest rates thus far reported. After the ether bond of racemic GGE is broken by replacement with a thioether bond involving glutathione, the glutathione moiety must be removed from the resulting two stereoisomers of the phenylpropanoid conjugate ß-glutathionyl-γ-hydroxypropiovanillone (GS-HPV). We found that the Nu-class glutathione S-transferase NaGSTNu is the only enzyme needed to remove glutathione from both (R)- and (S)-GS-HPV in N. aromaticivorans We solved the crystal structure of NaGSTNu and used molecular modeling to propose a mechanism for the glutathione lyase (deglutathionylation) reaction in which an enzyme-stabilized glutathione thiolate attacks the thioether bond of GS-HPV, and the reaction proceeds through an enzyme-stabilized enolate intermediate. Three residues implicated in the proposed mechanism (Thr51, Tyr166, and Tyr224) were found to be critical for the lyase reaction. We also found that Nu-class GSTs from Sphingobium sp. SYK-6 (which can also break the ß-aryl ether bond) and Escherichia coli (which cannot break the ß-aryl ether bond) can also cleave (R)- and (S)-GS-HPV, suggesting that glutathione lyase activity may be common throughout this widespread but largely uncharacterized class of glutathione S-transferases.


Assuntos
Glutationa Transferase/metabolismo , Lignina/metabolismo , Sphingomonadaceae/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glutationa Transferase/química , Glutationa Transferase/genética , Lignina/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Sphingomonadaceae/química , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Estereoisomerismo , Especificidade por Substrato , Transcriptoma
6.
J Biol Chem ; 291(10): 5234-46, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26637355

RESUMO

Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via ß-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent ß-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because ß-aryl ether bonds account for 50-70% of all interunit linkages in lignin, understanding the mechanism of enzymatic ß-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.


Assuntos
Proteínas de Bactérias/química , Domínio Catalítico , Lignina/metabolismo , Oxirredutases/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , Dados de Sequência Molecular , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Proteobactérias/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA