Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Clin Periodontol ; 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278722

RESUMO

OBJECTIVE: To identify gingival crevicular fluid (GCF)-derived inflammatory markers of periodontitis progression and periodontal treatment impact. METHODS: Periodontally healthy (H; n = 112) and periodontitis (P; n = 302) patients were monitored bi-monthly for 1 year without therapy. Periodontitis patients were re-examined 6 months after non-surgical periodontal therapy (NSPT). Levels of 64 biomarkers were measured in the GCF samples collected at each visit from progressing (n = 12 sites in H; n = 76 in P) and stable (n = 100 in H, n = 225 in P) sites. Clinical parameters and log-transformed analyte levels were averaged within clinical groups at each time point and analysed using linear mixed models. RESULTS: During monitoring, progressing sites had significantly higher levels of IL-1ß, MMP-8, IL-12p40, EGF and VEGF. MMP-9 and Periostin were significantly more elevated in stable sites. Distinct cytokine profiles were observed based on baseline PD. Treatment led to significant reductions in Eotaxin, Flt-3L, GDF-15, GM-CSF, IL-1ß, IL-17, MIP-1d, RANTES and sCD40L, and increases in IP-10 and MMP-9. CONCLUSION: Distinct cytokine signatures observed in stable and progressing sites were maintained over time in the absence of treatment and significantly affected by NSPT.

2.
Microbiome ; 11(1): 123, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264481

RESUMO

BACKGROUND: Dental caries is a microbe and sugar-mediated biofilm-dependent oral disease. Of particular significance, a virulent type of dental caries, known as severe early childhood caries (S-ECC), is characterized by the synergistic polymicrobial interaction between the cariogenic bacterium, Streptococcus mutans, and an opportunistic fungal pathogen, Candida albicans. Although cross-sectional studies reveal their important roles in caries development, these exhibit limitations in determining the significance of these microbial interactions in the pathogenesis of the disease. Thus, it remains unclear the mechanism(s) through which the cross-kingdom interaction modulates the composition of the plaque microbiome. Here, we employed a novel ex vivo saliva-derived microcosm biofilm model to assess how exogenous pathogens could impact the structural and functional characteristics of the indigenous native oral microbiota. RESULTS: Through shotgun whole metagenome sequencing, we observed that saliva-derived biofilm has decreased richness and diversity but increased sugar-related metabolism relative to the planktonic phase. Addition of S. mutans and/or C. albicans to the native microbiome drove significant changes in its bacterial composition. In addition, the effect of the exogenous pathogens on microbiome diversity and taxonomic abundances varied depending on the sugar type. While the addition of S. mutans induced a broader effect on Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog abundances with glucose/fructose, S. mutans-C. albicans combination under sucrose conditions triggered unique and specific changes in microbiota composition/diversity as well as specific effects on KEGG pathways. Finally, we observed the presence of human epithelial cells within the biofilms via confocal microscopy imaging. CONCLUSIONS: Our data revealed that the presence of S. mutans and C. albicans, alone or in combination, as well as the addition of different sugars, induced unique alterations in both the composition and functional attributes of the biofilms. In particular, the combination of S. mutans and C. albicans seemed to drive the development (and perhaps the severity) of a dysbiotic/cariogenic oral microbiome. Our work provides a unique and pragmatic biofilm model for investigating the functional microbiome in health and disease as well as developing strategies to modulate the microbiome. Video Abstract.


Assuntos
Cárie Dentária , Microbiota , Pré-Escolar , Humanos , Biofilmes , Candida albicans/genética , Estudos Transversais , Streptococcus mutans/genética , Açúcares/metabolismo
3.
mBio ; 14(1): e0276922, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36602308

RESUMO

Candida albicans, a fungus typically found in the mucosal niche, is frequently detected in biofilms formed on teeth (dental plaque) of toddlers with severe childhood caries, a global public health problem that causes rampant tooth decay. However, knowledge about fungal traits on the tooth surface remains limited. Here, we assess the phylogeny, phenotype, and interkingdom interactions of C. albicans isolated from plaque of diseased toddlers and compare their properties to reference strains, including 529L (mucosal isolate). C. albicans isolates exhibit broad phenotypic variations, but all display cariogenic traits, including high proteinase activity, acidogenicity, and acid tolerance. Unexpectedly, we find distinctive variations in filamentous growth, ranging from hyphal defective to hyperfilamentous. We then investigate the ability of tooth isolates to form interkingdom biofilms with Streptococcus mutans (cariogenic partner) and Streptococcus gordonii (mucosal partner). The hyphal-defective isolate lacks cobinding with S. gordonii, but all C. albicans isolates develop robust biofilms with S. mutans irrespective of their filamentation state. Moreover, either type of C. albicans (hyphae defective or hyperfilamentous) enhances sucrose metabolism and biofilm acidogenicity, creating highly acidic environmental pH (<5.5). Notably, C. albicans isolates show altered transcriptomes associated with pH, adhesion, and cell wall composition (versus reference strains), further supporting niche-associated traits. Our data reveal that C. albicans displays distinctive adaptive mechanisms on the tooth surface and develops interactions with pathogenic bacteria while creating an acidogenic state regardless of fungal morphology, contrasting with interkingdom partnerships in mucosal infections. Human tooth may provide new insights into fungal colonization/adaptation, interkingdom biofilms, and contributions to disease pathogenesis. IMPORTANCE Severe early childhood caries is a widespread global public health problem causing extensive tooth decay and systemic complications. Candida albicans, a fungus typically found in mucosal surfaces, is frequently detected in dental plaque formed on teeth of diseased toddlers. However, the clinical traits of C. albicans isolated from tooth remain underexplored. Here, we find that C. albicans tooth isolates exhibit unique biological and transcriptomic traits. Notably, interkingdom biofilms with S. mutans can be formed irrespective of their filamentation state. Furthermore, tooth isolates commonly share dental caries-promoting functions, including acidogenesis, proteolytic activity, and enhanced sugar metabolism, while displaying increased expression of pH-responsive and adhesion genes. Our findings reveal that C. albicans colonizing human teeth displays distinctive adaptive mechanisms to mediate interkingdom interactions associated with a disease-causing state on a mineralized surface, providing new insights into Candida pathobiology and its role in a costly pediatric disease.


Assuntos
Cárie Dentária , Placa Dentária , Humanos , Pré-Escolar , Candida albicans/genética , Candida albicans/metabolismo , Biofilmes , Fenótipo , Streptococcus mutans/metabolismo
4.
mBio ; 13(1): e0013122, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35189700

RESUMO

Biofilm community development has been established as a sequential process starting from the attachment of single cells on a surface. However, microorganisms are often found as aggregates in the environment and in biological fluids. Here, we conduct a comprehensive analysis of the native structure and composition of aggregated microbial assemblages in human saliva and investigate their spatiotemporal attachment and biofilm community development. Using multiscale imaging, cell sorting, and computational approaches combined with sequencing analysis, a diverse mixture of aggregates varying in size, structure, and microbial composition, including bacteria associated with host epithelial cells, can be found in saliva in addition to a few single-cell forms. Phylogenetic analysis reveals a mixture of complex consortia of aerobes and anaerobes in which bacteria traditionally considered early and late colonizers are found mixed together. When individually tracked during colonization and biofilm initiation, aggregates rapidly proliferate and expand tridimensionally, modulating population growth, spatial organization, and community scaffolding. In contrast, most single cells remain static or are incorporated by actively growing aggregates. These results suggest an alternative biofilm development process whereby aggregates containing different species or associated with human cells collectively adhere to the surface as "growth nuclei" to build the biofilm and shape polymicrobial communities at various spatial and taxonomic scales. IMPORTANCE Microbes in biological fluids can be found as aggregates. How these multicellular structures bind to surfaces and initiate the biofilm life cycle remains understudied. Here, we investigate the structural organization of microbial aggregates in human saliva and their role in biofilm formation. We found diverse mixtures of aggregates with different sizes, structures, and compositions in addition to free-living cells. When individually tracked during binding and growth on tooth-like surfaces, most aggregates developed into structured biofilm communities, whereas most single cells remained static or were engulfed by the growing aggregates. Our results reveal that preformed microbial consortia adhere as "buds of growth," governing biofilm initiation without specific taxonomic order or cell-by-cell succession, which provide new insights into spatial and population heterogeneity development in complex ecosystems.


Assuntos
Ecossistema , Saliva , Bactérias , Biofilmes , Humanos , Filogenia , Saliva/microbiologia
5.
NPJ Biofilms Microbiomes ; 7(1): 7, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483519

RESUMO

Drug repurposing is a feasible strategy for the development of novel therapeutic applications. However, its potential use for oral treatments and impact on host microbiota remain underexplored. Here, we assessed the influences of topical oral applications of a repurposed FDA-approved drug, thonzonium bromide, on gastrointestinal microbiomes and host tissues in a rat model of dental caries designed to reduce cross-contamination associated with coprophagy. Using this model, we recapitulated the body site microbiota that mirrored the human microbiome profile. Oral microbiota was perturbed by the treatments with specific disruption of Rothia and Veillonella without affecting the global composition of the fecal microbiome. However, disturbances in the oral-gut microbial interactions were identified using nestedness and machine learning, showing increased sharing of oral taxon Sutterella in the gut microbiota. Host-tissue analyses revealed caries reduction on teeth by thonzonium bromide without cytotoxic effects, indicating bioactivity and biocompatibility when used orally. Altogether, we demonstrate how an oral treatment using a repurposed drug causes localized microbial disturbances and therapeutic effects while promoting turnover of specific oral species in the lower gut in vivo.


Assuntos
Reposicionamento de Medicamentos , Microbiota/efeitos dos fármacos , Boca/microbiologia , Pirimidinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Cárie Dentária/tratamento farmacológico , Cárie Dentária/microbiologia , Modelos Animais de Doenças , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Pirimidinas/uso terapêutico , Compostos de Amônio Quaternário/uso terapêutico , Ratos
6.
J Periodontol ; 92(4): 467-478, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32844406

RESUMO

BACKGROUND: To our knowledge, to date, no studies have comprehensively assessed the changes occurring in the subgingival microbiome of young patients with periodontitis treated by means of mechanical and antibiotic therapy. Thus, this study aimed to use next-generation sequencing to evaluate the subgingival microbial composition of young patients with severe periodontitis treated with scaling and root planing and systemic metronidazole and amoxicillin. METHODS: Subgingival samples from healthy individuals and shallow and deep sites from periodontitis patients were individually collected at baseline and 90 days post-treatment. The samples were analyzed using 16S rRNA-gene sequencing (MiSeq-Illumina) and QIIME pipeline. Differences between groups for the microbiological data were determined using principal coordinate analysis (PCoA), linear mixed models, and the PERMANOVA test. RESULTS: One hundred samples were collected from 10 periodontitis patients and seven healthy individuals. PCoA analysis revealed significant partitioning between pre-and post-treatment samples. No major differences in the composition of the subgingival microbiota were observed between shallow and deep sites, at baseline or at 90-days post-treatment, and the microbiome of both site categories after treatment moved closer in similarity to that observed in periodontal health. Treatment significantly improved all clinical parameters and reduced the relative abundance of classical periodontal pathogens and of Fretibacterium fastidiosum, Eubacterium saphenum, Porphyromonas endodontalis, Treponema medium, Synergistetes, TM7, and Treponema spp, and increased that of Actinomyces, Rothia, Haemophilus, Corynebacterium, and Streptococci spp. CONCLUSION: Mechanical treatment associated with metronidazole and amoxicillin promoted a beneficial change in the microbiome of young individuals with severe periodontitis.


Assuntos
Placa Dentária , Microbiota , Periodontite , Amoxicilina/uso terapêutico , Bactérias , Humanos , Metronidazol/uso terapêutico , RNA Ribossômico 16S/genética , Treponema
7.
Cell Host Microbe ; 22(1): 120-128.e4, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28704648

RESUMO

Diabetes is a risk factor for periodontitis, an inflammatory bone disorder and the greatest cause of tooth loss in adults. Diabetes has a significant impact on the gut microbiota; however, studies in the oral cavity have been inconclusive. By 16S rRNA sequencing, we show here that diabetes causes a shift in oral bacterial composition and, by transfer to germ-free mice, that the oral microbiota of diabetic mice is more pathogenic. Furthermore, treatment with IL-17 antibody decreases the pathogenicity of the oral microbiota in diabetic mice; when transferred to recipient germ-free mice, oral microbiota from IL-17-treated donors induced reduced neutrophil recruitment, reduced IL-6 and RANKL, and less bone resorption. Thus, diabetes-enhanced IL-17 alters the oral microbiota and renders it more pathogenic. Our findings provide a mechanistic basis to better understand how diabetes can increase the risk and severity of tooth loss.


Assuntos
Bactérias/patogenicidade , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/imunologia , Interleucina-17/imunologia , Microbiota/genética , Boca/microbiologia , Periodontite/etiologia , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/microbiologia , Perda do Osso Alveolar/patologia , Animais , Bactérias/genética , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/etiologia , Reabsorção Óssea/microbiologia , Contagem de Colônia Microbiana , DNA Bacteriano , Genes Bacterianos , Inflamação , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Osteoclastos , Periodontite/diagnóstico por imagem , Periodontite/microbiologia , Periodontite/patologia , Ligante RANK/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência , Perda de Dente/etiologia , Virulência
8.
Sci Rep ; 7(1): 17141, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215023

RESUMO

Physiological function, disease expression and drug effects vary by time-of-day. Clock disruption in mice results in cardio-metabolic, immunological and neurological dysfunction; circadian misalignment using forced desynchrony increases cardiovascular risk factors in humans. Here we integrated data from remote sensors, physiological and multi-omics analyses to assess the feasibility of detecting time dependent signals - the chronobiome - despite the "noise" attributable to the behavioral differences of free-living human volunteers. The majority (62%) of sensor readouts showed time-specific variability including the expected variation in blood pressure, heart rate, and cortisol. While variance in the multi-omics is dominated by inter-individual differences, temporal patterns are evident in the metabolome (5.4% in plasma, 5.6% in saliva) and in several genera of the oral microbiome. This demonstrates, despite a small sample size and limited sampling, the feasibility of characterizing at scale the human chronobiome "in the wild". Such reference data at scale are a prerequisite to detect and mechanistically interpret discordant data derived from patients with temporal patterns of disease expression, to develop time-specific therapeutic strategies and to refine existing treatments.


Assuntos
Ritmo Circadiano , Metaboloma , Microbiota , Proteoma , Transcriptoma , Adulto , Pressão Sanguínea , Proteínas Sanguíneas/metabolismo , Frequência Cardíaca , Humanos , Hidrocortisona/metabolismo , Masculino , Boca/metabolismo , Projetos Piloto , Saliva/metabolismo , Fatores de Tempo
9.
Inflamm Bowel Dis ; 21(12): 2797-805, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26288001

RESUMO

BACKGROUND: Oral manifestations are common in Crohn's disease (CD). Here we characterized the subgingival microbiota in pediatric patients with CD initiating therapy and after 8 weeks to identify microbial community features associated with CD and therapy. METHODS: Pediatric patients with CD were recruited from The Children's Hospital of Pennsylvania. Healthy control subjects were recruited from primary care or orthopedics clinic. Subgingival plaque samples were collected at initiation of therapy and after 8 weeks. Treatment exposures included 5-ASAs, immunomodulators, steroids, and infliximab. The microbiota was characterized by 16S rRNA gene sequencing. The study was repeated in separate discovery (35 CD, 43 healthy) and validation cohorts (43 CD, 31 healthy). RESULTS: Most subjects in both cohorts demonstrated clinical response after 8 weeks of therapy (discovery cohort 88%, validation cohort 79%). At week 0, both antibiotic exposure and disease state were associated with differences in bacterial community composition. Seventeen genera were identified in the discovery cohort as candidate biomarkers, of which 11 were confirmed in the validation cohort. Capnocytophaga, Rothia, and TM7 were more abundant in CD relative to healthy controls. Other bacteria were reduced in abundance with antibiotic exposure among CD subjects. CD-associated genera were not enriched compared with healthy controls after 8 weeks of therapy. CONCLUSIONS: Subgingival microbial community structure differed with CD and antibiotic use. Results in the discovery cohort were replicated in a separate validation cohort. Several potentially pathogenic bacterial lineages were associated with CD but were not diminished in abundance by antibiotic treatment, suggesting targets for additional surveillance.


Assuntos
Antibacterianos/uso terapêutico , Doença de Crohn/complicações , Gengiva/microbiologia , Doenças da Gengiva/microbiologia , Microbiota/efeitos dos fármacos , Adolescente , Anti-Inflamatórios/uso terapêutico , Capnocytophaga , Estudos de Casos e Controles , Criança , Pré-Escolar , Doença de Crohn/tratamento farmacológico , Doença de Crohn/microbiologia , Feminino , Fármacos Gastrointestinais/uso terapêutico , Gengiva/patologia , Doenças da Gengiva/tratamento farmacológico , Humanos , Fatores Imunológicos/uso terapêutico , Infliximab/uso terapêutico , Estudos Longitudinais , Masculino , Mesalamina/uso terapêutico , Microbiota/genética , RNA Ribossômico 16S , Esteroides/uso terapêutico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA