RESUMO
AIM: To investigate individual susceptibility to periodontitis by conducting an epigenome-wide association study using peripheral blood. MATERIALS AND METHODS: We included 1077 African American and 457 European American participants of the Atherosclerosis Risk in Communities (ARIC) study who had completed a dental examination or reported being edentulous at Visit 4 and had available data on DNA methylation from Visit 2 or 3. DNA methylation levels were compared by periodontal disease severity and edentulism through discovery analyses and subsequent testing of individual CpGs. RESULTS: Our discovery analysis replicated findings from a previous study reporting a region in gene ZFP57 (6p22.1) that was significantly hypomethylated in severe periodontal disease compared with no/mild periodontal disease in European American participants. Higher methylation levels in a separate region in an unknown gene (located in Chr10: 743,992-744,958) was associated with significantly higher odds of edentulism compared with no/mild periodontal disease in African American participants. In subsequent CpG testing, four CpGs in a region previously associated with periodontitis located within HOXA4 were significantly hypermethylated in severe periodontal disease compared with no/mild periodontal disease in African American participants (odds ratio per 1 SD increase in methylation level: cg11015251: 1.28 (1.02, 1.61); cg14359292: 1.24 (1.01, 1.54); cg07317062: 1.30 (1.05, 1.61); cg08657492: 1.25 (1.01, 1.55)). CONCLUSIONS: Our study highlights epigenetic variations in ZPF57 and HOXA4 that are significantly and reproducibly associated with periodontitis. Future studies should evaluate gene regulatory mechanisms in the candidate regions of these loci.
Assuntos
Aterosclerose , Doenças Periodontais , Periodontite , Humanos , Epigenoma , Estudo de Associação Genômica Ampla , Doenças Periodontais/genética , Aterosclerose/genética , Periodontite/genética , Leucócitos , GenômicaRESUMO
Tooth agenesis (TA), the failure of development of one or more permanent teeth, is a common craniofacial abnormality observed in different world populations. The genetic etiology of TA is heterogeneous; more than a dozen genes have been associated with isolated or nonsyndromic TA, and more than 80 genes with syndromic forms. In this study, we applied whole exome sequencing (WES) to identify candidate genes contributing to TA in four Turkish families. Likely pathogenic variants with a low allele frequency in the general population were identified in four disease-associated genes, including two distinct variants in TSPEAR, associated with syndromic and isolated TA in one family each; a variant in LAMB3 associated with syndromic TA in one family; and a variant in BCOR plus a disease-associated WNT10A variant in one family with syndromic TA. With the notable exception of WNT10A (Tooth agenesis, selective, 4, MIM #150400), the genotype-phenotype relationships described in the present cohort represent an expansion of the clinical spectrum associated with these genes: TSPEAR (Deafness, autosomal recessive 98, MIM #614861), LAMB3 (Amelogenesis imperfecta, type IA, MIM #104530; Epidermolysis bullosa, junctional, MIMs #226700 and #226650), and BCOR (Microphthalmia, syndromic 2, MIM #300166). We provide evidence supporting the candidacy of these genes with TA, and propose TSPEAR as a novel nonsyndromic TA gene. Our data also suggest potential multilocus genomic variation, or mutational burden, in a single family, involving the BCOR and WNT10A loci, underscoring the complexity of the genotype-phenotype relationship in the common complex trait of TA.
Assuntos
Anodontia/genética , Moléculas de Adesão Celular/genética , Marcadores Genéticos , Mutação , Proteínas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Proteínas Wnt/genética , Anodontia/epidemiologia , Anodontia/patologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Turquia/epidemiologia , CalininaRESUMO
Tooth development is regulated by multiple genetic pathways, which ultimately drive the complex interactions between the oral epithelium and mesenchyme. Disruptions at any time point during this process may lead to failure of tooth development, also known as tooth agenesis (TA). TA is a common craniofacial abnormality in humans and represents the failure to develop one or more permanent teeth. Many genes and potentially subtle variants in these genes contribute to the TA phenotype. We report the clinical and genetic impact of a rare homozygous ANTXR1 variant (c.1312C>T), identified by whole exome sequencing (WES), in a consanguineous Turkish family with TA. Mutations in ANTXR1 have been associated with GAPO (growth retardation, alopecia, pseudoanodontia, and optic atrophy) syndrome and infantile hemangioma, however no clinical characteristics associated with these conditions were observed in our study family. We detected the expression of Antxr1 in oral and dental tissues of developing mouse embryos, further supporting a role for this gene in tooth development. Our findings implicate ANTXR1 as a candidate gene for isolated TA, suggest the involvement of specific hypomorphic alleles, and expand the previously known ANTXR1-associated phenotypes.
Assuntos
Alelos , Anodontia/diagnóstico , Anodontia/genética , Estudos de Associação Genética , Mutação , Proteínas de Neoplasias/genética , Fenótipo , Receptores de Superfície Celular/genética , Substituição de Aminoácidos , Animais , Criança , Consanguinidade , Fácies , Genótipo , Humanos , Masculino , Camundongos , Proteínas dos Microfilamentos , Linhagem , Radiografia , Sequenciamento do ExomaRESUMO
GAPO syndrome (OMIM#230740) is the acronym for growth retardation, alopecia, pseudoanodontia, and optic atrophy. About 35 cases have been reported, making it among one of the rarest recessive conditions. Distinctive craniofacial features including alopecia, rarefaction of eyebrows and eyelashes, frontal bossing, high forehead, mid-facial hypoplasia, hypertelorism, and thickened eyelids and lips make GAPO syndrome a clinically recognizable phenotype. While this genomic study was in progress mutations in ANTXR1 were reported to cause GAPO syndrome. In our study we performed whole exome sequencing (WES) for five affected individuals from three Turkish kindreds segregating the GAPO trait. Exome sequencing analysis identified three novel homozygous mutations including; one frame-shift (c.1220_1221insT; p.Ala408Cysfs*2), one splice site (c.411A>G; p.Gln137Gln), and one non-synonymous (c.1150G>A; p.Gly384Ser) mutation in the ANTXR1 gene. Our studies expand the allelic spectrum in this rare condition and potentially provide insight into the role of ANTXR1 in the regulation of the extracellular matrix.
Assuntos
Alopecia/genética , Anodontia/genética , Exoma/genética , Transtornos do Crescimento/genética , Mutação/genética , Proteínas de Neoplasias/genética , Atrofias Ópticas Hereditárias/genética , Receptores de Superfície Celular/genética , Adolescente , Adulto , Sequência de Bases , Criança , Segregação de Cromossomos/genética , Análise Mutacional de DNA , Fácies , Família , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Proteínas de Neoplasias/química , Linhagem , Estrutura Terciária de Proteína , Receptores de Superfície Celular/químicaRESUMO
BACKGROUND: Over 90% of adults aged 20 years or older with permanent teeth have suffered from dental caries leading to pain, infection, or even tooth loss. Although caries prevalence has decreased over the past decade, there are still about 23% of dentate adults who have untreated carious lesions in the US. Dental caries is a complex disorder affected by both individual susceptibility and environmental factors. Approximately 35-55% of caries phenotypic variation in the permanent dentition is attributable to genes, though few specific caries genes have been identified. Therefore, we conducted the first genome-wide association study (GWAS) to identify genes affecting susceptibility to caries in adults. METHODS: Five independent cohorts were included in this study, totaling more than 7000 participants. For each participant, dental caries was assessed and genetic markers (single nucleotide polymorphisms, SNPs) were genotyped or imputed across the entire genome. Due to the heterogeneity among the five cohorts regarding age, genotyping platform, quality of dental caries assessment, and study design, we first conducted genome-wide association (GWA) analyses on each of the five independent cohorts separately. We then performed three meta-analyses to combine results for: (i) the comparatively younger, Appalachian cohorts (N = 1483) with well-assessed caries phenotype, (ii) the comparatively older, non-Appalachian cohorts (N = 5960) with inferior caries phenotypes, and (iii) all five cohorts (N = 7443). Top ranking genetic loci within and across meta-analyses were scrutinized for biologically plausible roles on caries. RESULTS: Different sets of genes were nominated across the three meta-analyses, especially between the younger and older age cohorts. In general, we identified several suggestive loci (P-value ≤ 10E-05) within or near genes with plausible biological roles for dental caries, including RPS6KA2 and PTK2B, involved in p38-depenedent MAPK signaling, and RHOU and FZD1, involved in the Wnt signaling cascade. Both of these pathways have been implicated in dental caries. ADMTS3 and ISL1 are involved in tooth development, and TLR2 is involved in immune response to oral pathogens. CONCLUSIONS: As the first GWAS for dental caries in adults, this study nominated several novel caries genes for future study, which may lead to better understanding of cariogenesis, and ultimately, to improved disease predictions, prevention, and/or treatment.
Assuntos
Suscetibilidade à Cárie Dentária/genética , Cárie Dentária/genética , Estudo de Associação Genômica Ampla , Sistema de Sinalização das MAP Quinases/genética , Via de Sinalização Wnt/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos/genética , Índice CPO , Dentição Permanente , Humanos , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Although hydrochlorothiazide (HCTZ) is a well-established first-line antihypertensive in the United States, <50% of HCTZ treated patients achieve blood pressure (BP) control. Thus, identifying biomarkers that could predict the BP response to HCTZ is critically important. In this study, we utilized metabolomics, genomics, and lipidomics to identify novel pathways and biomarkers associated with HCTZ BP response. METHODS AND RESULTS: First, we conducted a pathway analysis for 13 metabolites we recently identified to be significantly associated with HCTZ BP response. From this analysis, we found the sphingolipid metabolic pathway as the most significant pathway (P=5.8E-05). Testing 78 variants, within 14 genes involved in the sphingolipid metabolic canonical pathway, with the BP response to HCTZ identified variant rs6078905, within the SPTLC3 gene, as a novel biomarker significantly associated with the BP response to HCTZ in whites (n=228). We found that rs6078905 C-allele carriers had a better BP response to HCTZ versus noncarriers (∆SBP/∆DBP: -11.4/-6.9 versus -6.8/-3.5 mm Hg; ∆SBP P=6.7E-04; ∆DBP P=4.8E-04). Additionally, in blacks (n=148), we found genetic signals in the SPTLC3 genomic region significantly associated with the BP response to HCTZ (P<0.05). Last, we observed that rs6078905 significantly affects the baseline level of 4 sphingomyelins (N24:2, N24:3, N16:1, and N22:1; false discovery rate <0.05), from which N24:2 sphingomyelin has a significant correlation with both HCTZ DBP-response (r=-0.42; P=7E-03) and SBP-response (r=-0.36; P=2E-02). CONCLUSIONS: This study provides insight into potential pharmacometabolomic and genetic mechanisms underlying HCTZ BP response and suggests that SPTLC3 is a potential determinant of the BP response to HCTZ. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00246519.
Assuntos
Hidroclorotiazida/uso terapêutico , Hipertensão/tratamento farmacológico , Inibidores de Simportadores de Cloreto de Sódio/uso terapêutico , Esfingolipídeos/metabolismo , Adulto , Pressão Sanguínea , Feminino , Genômica , Humanos , Metabolismo dos Lipídeos , Masculino , Redes e Vias Metabólicas , Metabolômica , Pessoa de Meia-Idade , Nitrilas , Farmacogenética , Prognóstico , Serina C-Palmitoiltransferase/genética , Siloxanas , Resultado do TratamentoRESUMO
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in â¼ 45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy-associated genes in subjects versus controls, confirmed in a second ethnically discrete neuropathy cohort, suggesting that mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HPMVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity.
Assuntos
Doença de Charcot-Marie-Tooth/genética , Exoma , Carga Genética , Doenças do Sistema Nervoso Periférico/genética , Fenótipo , Animais , Feminino , Variação Genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Masculino , Mutação , Proteína P2 de Mielina/genética , Linhagem , Penetrância , Serina C-Palmitoiltransferase/genética , Supressão Genética , Peixe-ZebraRESUMO
BACKGROUND: The observational relationship between obesity and periodontitis is widely known, yet causal evidence is lacking. Our objective was to investigate causal associations between periodontitis and body mass index (BMI). METHODS: We performed Mendelian randomization analyses with BMI-associated loci combined in a genetic risk score (GRS) as the instrument for BMI. All analyses were conducted within the Gene-Lifestyle Interactions and Dental Endpoints (GLIDE) Consortium in 13 studies from Europe and the USA, including 49,066 participants with clinically assessed (seven studies, 42.1% of participants) and self-reported (six studies, 57.9% of participants) periodontitis and genotype data (17,672/31,394 with/without periodontitis); 68,761 participants with BMI and genotype data; and 57,871 participants (18,881/38,990 with/without periodontitis) with data on BMI and periodontitis. RESULTS: In the observational meta-analysis of all participants, the pooled crude observational odds ratio (OR) for periodontitis was 1.13 [95% confidence interval (CI): 1.03, 1.24] per standard deviation increase of BMI. Controlling for potential confounders attenuated this estimate (OR = 1.08; 95% CI:1.03, 1.12). For clinically assessed periodontitis, corresponding ORs were 1.25 (95% CI: 1.10, 1.42) and 1.13 (95% CI: 1.10, 1.17), respectively. In the genetic association meta-analysis, the OR for periodontitis was 1.01 (95% CI: 0.99, 1.03) per GRS unit (per one effect allele) in all participants and 1.00 (95% CI: 0.97, 1.03) in participants with clinically assessed periodontitis. The instrumental variable meta-analysis of all participants yielded an OR of 1.05 (95% CI: 0.80, 1.38) per BMI standard deviation, and 0.90 (95% CI: 0.56, 1.46) in participants with clinical data. CONCLUSIONS: Our study does not support total adiposity as a causal risk factor for periodontitis, as the point estimate is very close to the null in the causal inference analysis, with wide confidence intervals.