Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653949

RESUMO

Charcot-Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive demyelinating neuropathy with childhood onset, caused by loss-of-function mutations in the myotubularin-related 2 (MTMR2) gene. MTMR2 is a ubiquitously expressed catalytically active 3-phosphatase, which in vitro dephosphorylates the 3-phosphoinositides PtdIns3P and PtdIns(3,5)P2, with a preference for PtdIns(3,5)P2 A hallmark of CMT4B1 neuropathy are redundant loops of myelin in the nerve termed myelin outfoldings, which can be considered the consequence of altered growth of myelinated fibers during postnatal development. How MTMR2 loss and the resulting imbalance of 3'-phosphoinositides cause CMT4B1 is unknown. Here we show that MTMR2 by regulating PtdIns(3,5)P2 levels coordinates mTORC1-dependent myelin synthesis and RhoA/myosin II-dependent cytoskeletal dynamics to promote myelin membrane expansion and longitudinal myelin growth. Consistent with this, pharmacological inhibition of PtdIns(3,5)P2 synthesis or mTORC1/RhoA signaling ameliorates CMT4B1 phenotypes. Our data reveal a crucial role for MTMR2-regulated lipid turnover to titrate mTORC1 and RhoA signaling thereby controlling myelin growth.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Bainha de Mielina/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Transdução de Sinais , Animais , Doença de Charcot-Marie-Tooth/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Knockout , Bainha de Mielina/genética , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Fosfatos de Fosfatidilinositol/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Eur J Neurol ; 30(2): 511-526, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260368

RESUMO

BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders caused by mutations in at least 100 genes. However, approximately 60% of cases with axonal neuropathies (CMT2) still remain without a genetic diagnosis. We aimed at identifying novel disease genes responsible for CMT2. METHODS: We performed whole exome sequencing and targeted next generation sequencing panel analyses on a cohort of CMT2 families with evidence for autosomal recessive inheritance. We also performed functional studies to explore the pathogenetic role of selected variants. RESULTS: We identified rare, recessive variants in the MYO9B (myosin IX) gene in two families with CMT2. MYO9B has not yet been associated with a human disease. MYO9B is an unconventional single-headed processive myosin motor protein with signaling properties, and, consistent with this, our results indicate that a variant occurring in the MYO9B motor domain impairs protein expression level and motor activity. Interestingly, a Myo9b-null mouse has degenerating axons in sciatic nerves and optic nerves, indicating that MYO9B plays an essential role in both peripheral nervous system and central nervous system axons, respectively. The degeneration observed in the optic nerve prompted us to screen for MYO9B mutations in a cohort of patients with optic atrophy (OA). Consistent with this, we found compound heterozygous variants in one case with isolated OA. CONCLUSIONS: Novel or very rare variants in MYO9B are associated with CMT2 and isolated OA.


Assuntos
Doença de Charcot-Marie-Tooth , Miosinas , Animais , Humanos , Camundongos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Mutação/genética , Linhagem , Fenótipo , Proteínas , Nervo Isquiático/patologia , Miosinas/genética
3.
J Peripher Nerv Syst ; 28(2): 134-149, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36855793

RESUMO

Charcot-Marie-Tooth (CMT) neuropathies are one of the most common neuromuscular disorders. However, despite the identification of more than 100 causative genes, therapeutic options are still missing. The generation of authentic animal models and the increasing insights into the understanding of disease mechanisms, in addition to extraordinary developments in gene and molecular therapies, are quickly changing this scenario, and several strategies are currently being translated, or are getting close to, clinical trials. Here, we provide an overview of the most recent advances for the therapy of CMT at both the preclinical and clinical levels. For clarity, we have grouped the approaches in three different categories: gene therapy based on viral-mediated delivery, molecular therapies based on alternative delivery systems, and pharmacological therapies.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Modelos Animais de Doenças
4.
Ann Neurol ; 86(1): 55-67, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31070812

RESUMO

OBJECTIVE: Charcot-Marie-Tooth (CMT) disease 4B1 and 4B2 (CMT4B1/B2) are characterized by recessive inheritance, early onset, severe course, slowed nerve conduction, and myelin outfoldings. CMT4B3 shows a more heterogeneous phenotype. All are associated with myotubularin-related protein (MTMR) mutations. We conducted a multicenter, retrospective study to better characterize CMT4B. METHODS: We collected clinical and genetic data from CMT4B subjects in 18 centers using a predefined minimal data set including Medical Research Council (MRC) scores of nine muscle pairs and CMT Neuropathy Score. RESULTS: There were 50 patients, 21 of whom never reported before, carrying 44 mutations, of which 21 were novel and six representing novel disease associations of known rare variants. CMT4B1 patients had significantly more-severe disease than CMT4B2, with earlier onset, more-frequent motor milestones delay, wheelchair use, and respiratory involvement as well as worse MRC scores and motor CMT Examination Score components despite younger age at examination. Vocal cord involvement was common in both subtypes, whereas glaucoma occurred in CMT4B2 only. Nerve conduction velocities were similarly slowed in both subtypes. Regression analyses showed that disease severity is significantly associated with age in CMT4B1. Slopes are steeper for CMT4B1, indicating faster disease progression. Almost none of the mutations in the MTMR2 and MTMR13 genes, responsible for CMT4B1 and B2, respectively, influence the correlation between disease severity and age, in agreement with the hypothesis of a complete loss of function of MTMR2/13 proteins for such mutations. INTERPRETATION: This is the largest CMT4B series ever reported, demonstrating that CMT4B1 is significantly more severe than CMT4B2, and allowing an estimate of prognosis. ANN NEUROL 2019.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Estudos Retrospectivos , Adulto Jovem
5.
J Neurol Neurosurg Psychiatry ; 90(10): 1171-1179, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31167812

RESUMO

BACKGROUND: Inherited peripheral neuropathies (IPNs) represent a broad group of genetically and clinically heterogeneous disorders, including axonal Charcot-Marie-Tooth type 2 (CMT2) and hereditary motor neuropathy (HMN). Approximately 60%-70% of cases with HMN/CMT2 still remain without a genetic diagnosis. Interestingly, mutations in HMN/CMT2 genes may also be responsible for motor neuron disorders or other neuromuscular diseases, suggesting a broad phenotypic spectrum of clinically and genetically related conditions. Thus, it is of paramount importance to identify novel causative variants in HMN/CMT2 patients to better predict clinical outcome and progression. METHODS: We designed a collaborative study for the identification of variants responsible for HMN/CMT2. We collected 15 HMN/CMT2 families with evidence for autosomal recessive inheritance, who had tested negative for mutations in 94 known IPN genes, who underwent whole-exome sequencing (WES) analyses. Candidate genes identified by WES were sequenced in an additional cohort of 167 familial or sporadic HMN/CMT2 patients using next-generation sequencing (NGS) panel analysis. RESULTS: Bioinformatic analyses led to the identification of novel or very rare variants in genes, which have not been previously associated with HMN/CMT2 (ARHGEF28, KBTBD13, AGRN and GNE); in genes previously associated with HMN/CMT2 but in combination with different clinical phenotypes (VRK1 and PNKP), and in the SIGMAR1 gene, which has been linked to HMN/CMT2 in only a few cases. These findings were further validated by Sanger sequencing, segregation analyses and functional studies. CONCLUSIONS: These results demonstrate the broad spectrum of clinical phenotypes that can be associated with a specific disease gene, as well as the complexity of the pathogenesis of neuromuscular disorders.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Atrofia Muscular Espinal/genética , Adulto , Idoso , Agrina/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Biologia Computacional , Enzimas Reparadoras do DNA/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Complexos Multienzimáticos/genética , Proteínas Musculares/genética , Atrofia Muscular Espinal/fisiopatologia , Linhagem , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Serina-Treonina Quinases/genética , Receptores sigma/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Sequenciamento do Exoma , Receptor Sigma-1
6.
Hum Mol Genet ; 24(2): 383-96, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25187576

RESUMO

Mutations of FIG4 are responsible for Yunis-Varón syndrome, familial epilepsy with polymicrogyria, and Charcot-Marie-Tooth type 4J neuropathy (CMT4J). Although loss of the FIG4 phospholipid phosphatase consistently causes decreased PtdIns(3,5)P2 levels, cell-specific sensitivity to partial loss of FIG4 function may differentiate FIG4-associated disorders. CMT4J is an autosomal recessive neuropathy characterized by severe demyelination and axonal loss in human, with both motor and sensory involvement. However, it is unclear whether FIG4 has cell autonomous roles in both motor neurons and Schwann cells, and how loss of FIG4/PtdIns(3,5)P2-mediated functions contribute to the pathogenesis of CMT4J. Here, we report that mice with conditional inactivation of Fig4 in motor neurons display neuronal and axonal degeneration. In contrast, conditional inactivation of Fig4 in Schwann cells causes demyelination and defects in autophagy-mediated degradation. Moreover, Fig4-regulated endolysosomal trafficking in Schwann cells is essential for myelin biogenesis during development and for proper regeneration/remyelination after injury. Our data suggest that impaired endolysosomal trafficking in both motor neurons and Schwann cells contributes to CMT4J neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth/metabolismo , Flavoproteínas/metabolismo , Neurônios Motores/metabolismo , Células de Schwann/metabolismo , Animais , Doença de Charcot-Marie-Tooth/genética , Endossomos/metabolismo , Flavoproteínas/genética , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatases de Fosfoinositídeos , Transporte Proteico
7.
PLoS Genet ; 7(10): e1002319, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028665

RESUMO

We previously reported that autosomal recessive demyelinating Charcot-Marie-Tooth (CMT) type 4B1 neuropathy with myelin outfoldings is caused by loss of MTMR2 (Myotubularin-related 2) in humans, and we created a faithful mouse model of the disease. MTMR2 dephosphorylates both PtdIns3P and PtdIns(3,5)P(2), thereby regulating membrane trafficking. However, the function of MTMR2 and the role of the MTMR2 phospholipid phosphatase activity in vivo in the nerve still remain to be assessed. Mutations in FIG4 are associated with CMT4J neuropathy characterized by both axonal and myelin damage in peripheral nerve. Loss of Fig4 function in the plt (pale tremor) mouse produces spongiform degeneration of the brain and peripheral neuropathy. Since FIG4 has a role in generation of PtdIns(3,5)P(2) and MTMR2 catalyzes its dephosphorylation, these two phosphatases might be expected to have opposite effects in the control of PtdIns(3,5)P(2) homeostasis and their mutations might have compensatory effects in vivo. To explore the role of the MTMR2 phospholipid phosphatase activity in vivo, we generated and characterized the Mtmr2/Fig4 double null mutant mice. Here we provide strong evidence that Mtmr2 and Fig4 functionally interact in both Schwann cells and neurons, and we reveal for the first time a role of Mtmr2 in neurons in vivo. Our results also suggest that imbalance of PtdIns(3,5)P(2) is at the basis of altered longitudinal myelin growth and of myelin outfolding formation. Reduction of Fig4 by null heterozygosity and downregulation of PIKfyve both rescue Mtmr2-null myelin outfoldings in vivo and in vitro.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Células de Schwann/enzimologia , Aminopiridinas/farmacologia , Animais , Axônios/enzimologia , Axônios/metabolismo , Doença de Charcot-Marie-Tooth/enzimologia , Doença de Charcot-Marie-Tooth/metabolismo , Flavoproteínas/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Nervos Periféricos/enzimologia , Nervos Periféricos/crescimento & desenvolvimento , Nervos Periféricos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatases de Fosfoinositídeos , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ratos , Células de Schwann/metabolismo
8.
J Neurosci ; 29(27): 8858-70, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19587293

RESUMO

How membrane biosynthesis and homeostasis is achieved in myelinating glia is mostly unknown. We previously reported that loss of myotubularin-related protein 2 (MTMR2) provokes autosomal recessive demyelinating Charcot-Marie-Tooth type 4B1 neuropathy, characterized by excessive redundant myelin, also known as myelin outfoldings. We generated a Mtmr2-null mouse that models the human neuropathy. We also found that, in Schwann cells, Mtmr2 interacts with Discs large 1 (Dlg1), a scaffold involved in polarized trafficking and membrane addition, whose localization in Mtmr2-null nerves is altered. We here report that, in Schwann cells, Dlg1 also interacts with kinesin 13B (kif13B) and Sec8, which are involved in vesicle transport and membrane tethering in polarized cells, respectively. Taking advantage of the Mtmr2-null mouse as a model of impaired membrane formation, we provide here the first evidence for a machinery that titrates membrane formation during myelination. We established Schwann cell/DRG neuron cocultures from Mtmr2-null mice, in which myelin outfoldings were reproduced and almost completely rescued by Mtmr2 replacement. By exploiting this in vitro model, we propose a mechanism whereby kif13B kinesin transports Dlg1 to sites of membrane remodeling where it coordinates a homeostatic control of myelination. The interaction of Dlg1 with the Sec8 exocyst component promotes membrane addition, whereas with Mtmr2, negatively regulates membrane formation. Myelin outfoldings thus arise as a consequence of the loss of negative control on the amount of membrane, which is produced during myelination.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/fisiologia , Homeostase/fisiologia , Bainha de Mielina/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Células de Schwann/fisiologia , Animais , Células COS , Proteínas de Transporte/metabolismo , Células Cultivadas , Chlorocebus aethiops , Técnicas de Cocultura , Proteína 1 Homóloga a Discs-Large , Regulação para Baixo/fisiologia , Exocitose/fisiologia , Células HeLa , Humanos , Proteínas de Membrana , Camundongos , Camundongos Knockout , Fibras Nervosas Mielinizadas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/deficiência , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Ratos , Proteínas Associadas SAP90-PSD95 , Células de Schwann/citologia
9.
Glia ; 58(16): 2005-16, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20878767

RESUMO

Numerous transgenic and knockout mouse models of human hereditary neuropathies have become available over the past decade. We describe a simple, reproducible, and safe biopsy of mouse skin for histopathological evaluation of the peripheral nervous system (PNS) in models of hereditary neuropathies. We compared the diagnostic outcome between sciatic nerve and dermal nerves found in skin biopsy (SB) from the hind foot. A total of five animal models of different Charcot-Marie-Tooth neuropathies, and one model of congenital muscular dystrophy associated neuropathy were examined. In wild type mice, dermal nerve fibers were readily identified by immunohistochemistry, light, and electron microscopy and they appeared similar to myelinated fibers in sciatic nerve. In mutant mice, SB manifested myelin abnormalities similar to those observed in sciatic nerves, including hypomyelination, onion bulbs, myelin outfolding, redundant loops, and tomacula. In many strains, however, SB showed additional abnormalities--fiber loss, dense neurofilament packing with lower phosphorylation status, and axonal degeneration-undetected in sciatic nerve, possibly because SB samples distal nerves. SB, a reliable technique to investigate peripheral neuropathies in human beings, is also useful to investigate animal models of hereditary neuropathies. Our data indicate that SB may reveal distal axonal pathology in mouse models and permits sequential follow-up of the neuropathy in an individual mouse, thereby reducing the number of mice necessary to document pathology of the PNS.


Assuntos
Axônios/patologia , Biópsia/métodos , Doença de Charcot-Marie-Tooth/patologia , Pé/inervação , Pé/patologia , Animais , Derme/inervação , Derme/patologia , Modelos Animais de Doenças , Epiderme/inervação , Epiderme/patologia , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Bainha de Mielina/patologia , Fibras Nervosas Mielinizadas/patologia , Nervo Isquiático/patologia , Nervo Sural/patologia
10.
J Neurol Neurosurg Psychiatry ; 81(9): 958-62, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20660910

RESUMO

BACKGROUND: Heat shock protein 27 (HSP27) mutations have been reported to cause both Charcot-Marie-Tooth disease (CMT) type 2F and distal hereditary motor neuropathy (dHMN) although never previously in a single family. OBJECTIVE: To analyse clinical and electrophysiological findings obtained in a single large Sardinian family bearing the HSP27 R127W mutation. METHODS: Twenty-one members of a five generation Sardinian family have been studied, including thirteen members affected by peroneal muscular atrophy and proved heterozygous for the known HSP27 R127W mutation. Twelve patients and eight unaffected relatives were subjected to clinical examination. A standardised electrophysiological study was performed in eleven patients and six unaffected relatives. RESULTS: Mean age at onset (+/-SD) was 31.2+/-7.2 years. Mean age at investigation was 45.2+/-12.9 years and mean disease duration at the time of investigation was 14+/-12.9 years. According to current criteria for CMT2 and dHMN, of the 10 patients who had undergone both clinical and neurophysiological examination, five were diagnosed as CMT2, two as dHMN and a further two patients were labelled as an intermediate type. Finally, due to the presence of spastic paraplegia, the index patient did not meet established criteria for the diagnosis of CMT or dHMN. DISCUSSION: Findings obtained in the present study, broadening the spectrum of clinical manifestations of disorders associated with HSP27 mutations, support the hypothesis of a continuum between CMT2 and dHMN forms and suggest a possible common spectrum between these entities and several forms of CMT plus pyramidal features (HMSN V), providing important implications for molecular genetic testing.


Assuntos
Doença de Charcot-Marie-Tooth/diagnóstico , Proteínas de Choque Térmico HSP27/genética , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Mutação/fisiologia , Adulto , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Eletrofisiologia/métodos , Feminino , Predisposição Genética para Doença , Neuropatia Hereditária Motora e Sensorial/genética , Neuropatia Hereditária Motora e Sensorial/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética
11.
Nat Commun ; 11(1): 2835, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503983

RESUMO

Inherited peripheral neuropathies (IPNs) represent a broad group of disorders including Charcot-Marie-Tooth (CMT) neuropathies characterized by defects primarily arising in myelin, axons, or both. The molecular mechanisms by which mutations in nearly 100 identified IPN/CMT genes lead to neuropathies are poorly understood. Here we show that the Ras-related GTPase Rab35 controls myelin growth via complex formation with the myotubularin-related phosphatidylinositol (PI) 3-phosphatases MTMR13 and MTMR2, encoded by genes responsible for CMT-types 4B2 and B1 in humans, and found that it downregulates lipid-mediated mTORC1 activation, a pathway known to crucially regulate myelin biogenesis. Targeted disruption of Rab35 leads to hyperactivation of mTORC1 signaling caused by elevated levels of PI 3-phosphates and to focal hypermyelination in vivo. Pharmacological inhibition of phosphatidylinositol 3,5-bisphosphate synthesis or mTORC1 signaling ameliorates this phenotype. These findings reveal a crucial role for Rab35-regulated lipid turnover by myotubularins to repress mTORC1 activity and to control myelin growth.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Bainha de Mielina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Astrócitos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Regulação para Baixo , Técnicas de Introdução de Genes , Células HEK293 , Células HeLa , Humanos , Metabolismo dos Lipídeos/genética , Camundongos Transgênicos , Mutação , Bainha de Mielina/patologia , Cultura Primária de Células , Proteínas Tirosina Fosfatases não Receptoras/antagonistas & inibidores , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas rab de Ligação ao GTP/genética
12.
J Cell Biol ; 167(4): 711-21, 2004 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-15557122

RESUMO

Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth (CMT) type 4B1, a demyelinating neuropathy with myelin outfolding and azoospermia. MTMR2 encodes a ubiquitously expressed phosphatase whose preferred substrate is phosphatidylinositol (3,5)-biphosphate, a regulator of membrane homeostasis and vesicle transport. We generated Mtmr2-null mice, which develop progressive neuropathy characterized by myelin outfolding and recurrent loops, predominantly at paranodal myelin, and depletion of spermatids and spermatocytes from the seminiferous epithelium, which leads to azoospermia. Disruption of Mtmr2 in Schwann cells reproduces the myelin abnormalities. We also identified a novel physical interaction in Schwann cells, between Mtmr2 and discs large 1 (Dlg1)/synapse-associated protein 97, a scaffolding molecule that is enriched at the node/paranode region. Dlg1 homologues have been located in several types of cellular junctions and play roles in cell polarity and membrane addition. We propose that Schwann cell-autonomous loss of Mtmr2-Dlg1 interaction dysregulates membrane homeostasis in the paranodal region, thereby producing outfolding and recurrent loops of myelin.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Bainha de Mielina/patologia , Oligospermia/genética , Nervos Periféricos/patologia , Proteínas Tirosina Fosfatases/deficiência , Proteínas Adaptadoras de Transdução de Sinal , Animais , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Proteína 1 Homóloga a Discs-Large , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Guanilato Quinases , Homeostase/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mutação/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligospermia/metabolismo , Nervos Periféricos/metabolismo , Nervos Periféricos/fisiopatologia , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases não Receptoras , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Nós Neurofibrosos/ultraestrutura , Células de Schwann/metabolismo , Células de Schwann/patologia , Células de Schwann/ultraestrutura , Túbulos Seminíferos/metabolismo , Túbulos Seminíferos/patologia , Túbulos Seminíferos/fisiopatologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
13.
Mol Neurobiol ; 35(3): 308-16, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17917119

RESUMO

Myotubularin-related proteins (MTMRs) constitute a broad family of ubiquitously expressed phosphatases with 14 members in humans, of which eight are catalytically active phosphatases, while six are catalytically inactive. Active MTMRs possess 3-phosphatase activity toward both PtdIns3P and PtdIns(3, 5)P 2 poliphosphoinositides (PPIn), suggesting an involvement in intracellular trafficking and membrane homeostasis. Among MTMRs, catalytically active MTMR2 and inactive MTMR13 have a nonredundant function in nerve. Loss of either MTMR2 or MTMR13 causes Charcot-Marie-Tooth type 4B1 and B2 neuropathy, respectively, characterized by demyelination and redundant loops of myelin known as myelin outfoldings. In Mtmr2-null mouse nerves, these aberrant foldings occur at 3-4 weeks after birth, a time when myelination is established, and Schwann cells are still elongating to reach the final internodal length. Moreover, Mtmr2-specific ablation in Schwann cells is both sufficient and necessary to provoke CMT4B1 with myelin outfoldings. MTMR2 phospholipid phosphatase might regulate intracellular trafficking events and membrane homeostasis in Schwann cells during postnatal nerve development. In this review, we will discuss recent findings on the MTMR family with a major focus on MTMR2 and MTMR13 and their putative role in Schwann cell biology.


Assuntos
Sistema Nervoso Periférico/enzimologia , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Células de Schwann/metabolismo , Animais , Doença de Charcot-Marie-Tooth/classificação , Doença de Charcot-Marie-Tooth/metabolismo , Humanos , Bainha de Mielina/ultraestrutura , Sistema Nervoso Periférico/anatomia & histologia , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/genética , Proteínas Tirosina Fosfatases não Receptoras/genética , Especificidade por Substrato
14.
Expert Rev Mol Med ; 9(25): 1-16, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17880751

RESUMO

Charcot-Marie-Tooth type 4B (CMT4B) is a severe autosomal recessive neuropathy with demyelination and myelin outfoldings of the nerve. This disorder is genetically heterogeneous, but thus far, mutations in myotubularin-related 2 (MTMR2) and MTMR13 genes have been shown to underlie CMT4B1 and CMT4B2, respectively. MTMR2 and MTMR13 belong to a family of ubiquitously expressed proteins sharing homology with protein tyrosine phosphatases (PTPs). The MTMR family, which has 14 members in humans, comprises catalytically active proteins, such as MTMR2, and catalytically inactive proteins, such as MTMR13. Despite their homology with PTPs, catalytically active MTMR phosphatases dephosphorylate both PtdIns3P and PtdIns(3,5)P2 phosphoinositides. Thus, MTMR2 and MTMR13 may regulate vesicular trafficking in Schwann cells. Loss of these proteins could lead to uncontrolled folding of myelin and, ultimately, to CMT4B. In this review, we discuss recent findings on this interesting protein family with the main focus on MTMR2 and MTMR13 and their involvement in the biology of Schwann cell and CMT4B neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Proteínas Tirosina Fosfatases não Receptoras/fisiologia , Doença de Charcot-Marie-Tooth/etiologia , Humanos , Células de Schwann/metabolismo , Células de Schwann/patologia
15.
Neuromuscul Disord ; 27(5): 487-491, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28190646

RESUMO

Charcot-Marie-Tooth type 4B1 (CMT4B1) is an autosomal recessive motor and sensory demyelinating neuropathy characterized by the association of early-onset neurological symptoms and typical histological findings. The natural history and the clinical variability of the disease are still poorly known, thus further clarification of the different phenotypes is needed. We report on the case of a Pakistani girl born to consanguineous parents harboring a novel mutation in the MTMR2 gene. When aged 18 months, reduced limb tone, muscle wasting associated with proximal and distal weakness prevalent in lower limbs, absence of tendon reflexes, hoarseness and inspiratory stridor were detected. Vocal cord palsy was diagnosed shortly after. We suggest that laryngeal involvement might be a relevant and initial feature of early-onset CMT4B1 neuropathy. Thus, affected patients should undergo early laryngological evaluation in order to prompt an appropriate management.


Assuntos
Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/genética , Mutação , Proteínas Tirosina Fosfatases não Receptoras/genética , Paralisia das Pregas Vocais/etiologia , Paralisia das Pregas Vocais/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/fisiopatologia , Diagnóstico Diferencial , Feminino , Humanos , Lactente , Fenótipo , Paralisia das Pregas Vocais/patologia , Paralisia das Pregas Vocais/fisiopatologia
16.
J Neurosci ; 25(37): 8567-77, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16162938

RESUMO

Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth type 4B1 (CMT4B1). This disorder is characterized by childhood onset of weakness and sensory loss, severely decreased nerve conduction velocity, demyelination in the nerve with myelin outfoldings, and severe functional impairment of affected patients, mainly resulting from loss of myelinated fibers in the nerve. We recently generated Mtmr2-null(neo) mice, which show a dysmyelinating neuropathy with myelin outfoldings, thus reproducing human CMT4B1. Mtmr2 is detected in both Schwann cells and neurons, in which it interacts with discs large 1/synapse-associated protein 97 and neurofilament light chain, respectively. Here, we specifically ablated Mtmr2 in either Schwann cells or motor neurons. Disruption of Mtmr2 in Schwann cells produced a dysmyelinating phenotype very similar to that of the Mtmr2-null(neo) mouse. Disruption of Mtmr2 in motor neurons does not provoke myelin outfoldings nor axonal defects. We propose that loss of Mtmr2 in Schwann cells, but not in motor neurons, is both sufficient and necessary to cause CMT4B1 neuropathy. Thus, therapeutical approaches might be designed in the future to specifically deliver the Mtmr2 phospholipid phosphatase to Schwann cells in affected nerves.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Neurônios Motores/enzimologia , Bainha de Mielina/patologia , Proteínas Tirosina Fosfatases/deficiência , Proteínas Tirosina Fosfatases/metabolismo , Células de Schwann/enzimologia , Animais , Camundongos , Camundongos Knockout , Neurônios Motores/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases não Receptoras
17.
EMBO Mol Med ; 8(12): 1438-1454, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27799291

RESUMO

Charcot-Marie-Tooth (CMT) neuropathies are highly heterogeneous disorders caused by mutations in more than 70 genes, with no available treatment. Thus, it is difficult to envisage a single suitable treatment for all pathogenetic mechanisms. Axonal Neuregulin 1 (Nrg1) type III drives Schwann cell myelination and determines myelin thickness by ErbB2/B3-PI3K-Akt signaling pathway activation. Nrg1 type III is inhibited by the α-secretase Tace, which negatively regulates PNS myelination. We hypothesized that modulation of Nrg1 levels and/or secretase activity may constitute a unifying treatment strategy for CMT neuropathies with focal hypermyelination as it could restore normal levels of myelination. Here we show that in vivo delivery of Niaspan, a FDA-approved drug known to enhance TACE activity, efficiently rescues myelination in the Mtmr2-/- mouse, a model of CMT4B1 with myelin outfoldings, and in the Pmp22+/- mouse, which reproduces HNPP (hereditary neuropathy with liability to pressure palsies) with tomacula. Importantly, we also found that Niaspan reduces hypermyelination of Vim (vimentin)-/- mice, characterized by increased Nrg1 type III and Akt activation, thus corroborating the hypothesis that Niaspan treatment downregulates Nrg1 type III signaling.


Assuntos
Proteína ADAM17/metabolismo , Doença de Charcot-Marie-Tooth/tratamento farmacológico , Doença de Charcot-Marie-Tooth/patologia , Fármacos Neuroprotetores/administração & dosagem , Niacina/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Resultado do Tratamento
18.
Gene ; 283(1-2): 17-26, 2002 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-11867209

RESUMO

Charcot-Marie-Tooth type 4B (CMT4B) is caused by mutations in the myotubularin-related 2 gene, MTMR2, on chromosome 11q22. To date, six loss of function mutations and one missense mutation have been demonstrated in CMT4B patients. It remains to be determined how dysfunction of a ubiquitously expressed phosphatase causes a demyelinating neuropathy. An animal model for CMT4B would provide insights into the pathogenesis of this disorder. We have therefore characterized the mouse homologue of MTMR2 by reconstructing the full-length Mtmr2 cDNA as well as the genomic structure. The 1932 nucleotide open reading frame corresponds to 15 coding exons, spanning a genomic region of approximately 55 kilobases, on mouse chromosome 9 as demonstrated by fluorescence in situ hybridization analysis. A comparison between the mouse and human genes revealed a similar genomic structure, except for the number of alternatively spliced exons in the 5'-untranslated region, two in mouse and three in man. In situ hybridization analysis of mouse embryos showed that Mtmr2 was ubiquitously expressed during organogenesis at E9.5, with some areas of enriched expression. At E14.5, Mtmr2 mRNA was more abundant in the peripheral nervous system, including in dorsal root ganglia and spinal roots.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas Tirosina Fosfatases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Embrião de Mamíferos/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes/genética , Humanos , Hibridização In Situ , Hibridização in Situ Fluorescente , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Mutação , Nervos Periféricos/metabolismo , Proteínas Tirosina Fosfatases não Receptoras , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
19.
Arch Neurol ; 67(12): 1498-505, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21149811

RESUMO

BACKGROUND: Charcot-Marie-Tooth (CMT) neuropathies are very heterogeneous disorders from both a clinical and genetic point of view. The CMT genes identified so far encode different proteins that are variably involved in regulating Schwann cells and/or axonal functions. However, the function of most of these proteins still remains to be elucidated. OBJECTIVE: To characterize a large cohort of patients with demyelinating, axonal, and intermediate forms of CMT neuropathy. DESIGN: A cohort of 131 unrelated patients were screened for mutations in 12 genes responsible for CMT neuropathies. Demyelinating, axonal, and intermediate forms of CMT neuropathy were initially distinguished as usual on the basis of electrophysiological criteria and clinical evaluation. A sural nerve biopsy was also performed for selected cases. Accordingly, patients underwent first-level analysis of the genes most frequently mutated in each clinical form of CMT neuropathy. RESULTS: Although our cohort had a particularly high percentage of cases of rare axonal and intermediate CMT neuropathies, we found mutations in 40% of patients. Among identified changes, 7 represented new mutations occurring in the MPZ, GJB1, EGR2, MFN2, NEFL, and HSBP1/HSP27 genes. Histopathological analysis performed in selected cases revealed morphological features, which correlated with the molecular diagnosis and provided evidence of the underlying pathogenetic mechanism. CONCLUSION: Clinical and pathological analysis of patients with CMT neuropathies contributes to our understanding of the molecular mechanisms of CMT neuropathies.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Charcot-Marie-Tooth/complicações , Criança , Estudos de Coortes , Conexinas/genética , Análise Mutacional de DNA , Doenças Desmielinizantes/complicações , Canais de Potássio Éter-A-Go-Go/genética , Feminino , GTP Fosfo-Hidrolases , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Chaperonas Moleculares , Mutação/genética , Fosfoproteínas/genética , Estudos Retrospectivos , Nervo Sural/patologia , Fatores de Transcrição/genética , Adulto Jovem , Proteína beta-1 de Junções Comunicantes
20.
Hum Mol Genet ; 12 Spec No 2: R285-92, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12925573

RESUMO

The myotubularin family is a large eukaryotic group within the tyrosine/dual-specificity phosphatase super-family (PTP/DSP). Among the 14 human members, three are mutated in genetic diseases: myotubular myopathy and two forms of Charcot-Marie-Tooth neuropathy. We present an analysis of the myotubularin family in sequenced genomes. The myotubularin family encompasses catalytically active and inactive phosphatases, and both classes are well conserved from nematode to man. Catalytically active myotubularins dephosphorylate phosphatidylinositol 3-phosphate (PtdIns3P) and PtdIns3,5P2, leading to the production of PtdIns and PtdIns5P. This activity may be modulated by direct interaction with catalytically inactive myotubularins. These phosphoinositides are signaling molecules that are notably involved in vacuolar transport and membrane trafficking. Myotubularins are thus proposed to be implicated in these cellular mechanisms, and recent observations on myotubularins homologues in the nematode Caenorhabditis elegans indicate a role in endocytosis.


Assuntos
Doenças Genéticas Inatas/genética , Proteínas Tirosina Fosfatases/metabolismo , Sequência de Aminoácidos , Catálise , Evolução Molecular , Humanos , Filogenia , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases não Receptoras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA