Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 43(7): 3826-40, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25765647

RESUMO

SFPQ, (a.k.a. PSF), is a human tumor suppressor protein that regulates many important functions in the cell nucleus including coordination of long non-coding RNA molecules into nuclear bodies. Here we describe the first crystal structures of Splicing Factor Proline and Glutamine Rich (SFPQ), revealing structural similarity to the related PSPC1/NONO heterodimer and a strikingly extended structure (over 265 Å long) formed by an unusual anti-parallel coiled-coil that results in an infinite linear polymer of SFPQ dimers within the crystals. Small-angle X-ray scattering and transmission electron microscopy experiments show that polymerization is reversible in solution and can be templated by DNA. We demonstrate that the ability to polymerize is essential for the cellular functions of SFPQ: disruptive mutation of the coiled-coil interaction motif results in SFPQ mislocalization, reduced formation of nuclear bodies, abrogated molecular interactions and deficient transcriptional regulation. The coiled-coil interaction motif thus provides a molecular explanation for the functional aggregation of SFPQ that directs its role in regulating many aspects of cellular nucleic acid metabolism.


Assuntos
Regulação da Expressão Gênica/fisiologia , Polímeros/química , Proteínas de Ligação a RNA/química , Western Blotting , Cristalografia por Raios X , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Microscopia Eletrônica de Transmissão , Fator de Processamento Associado a PTB , Conformação Proteica , Proteínas de Ligação a RNA/fisiologia
2.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1210-1220, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189741

RESUMO

The recombination directionality factors from Mesorhizobium spp. (RdfS) are involved in regulating the excision and transfer of integrative and conjugative elements. Here, solution small-angle X-ray scattering, and crystallization and preliminary structure solution of RdfS from Mesorhizobium japonicum R7A are presented. RdfS crystallizes in space group P212121, with evidence of eightfold rotational crystallographic/noncrystallographic symmetry. Initial structure determination by molecular replacement using ab initio models yielded a partial model (three molecules), which was completed after manual inspection revealed unmodelled electron density. The finalized crystal structure of RdfS reveals a head-to-tail polymer forming left-handed superhelices with large solvent channels. Additionally, RdfS has significant disorder in the C-terminal region of the protein, which is supported by the solution scattering data and the crystal structure. The steps taken to finalize structure determination, as well as the scattering and crystallographic characteristics of RdfS, are discussed.


Assuntos
Polímeros , Recombinação Genética , Cristalografia , Cristalografia por Raios X , Solventes , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA