RESUMO
The water-soluble and biocompatible D-glucuronic acid coated Eu(OH)3 nanorods (average thickness x average length = 9.0 x 118.3 nm) have been prepared in one-pot synthesis. The D-glucuronic acid coated Eu(OH)3 nanorods showed a strong fluorescence at approximately 600 nm with a narrow emission band width. A cytotoxicity test by using DU145 cells showed that D-glucuronic acid coated Eu(OH)3 nanorods are not toxic up to 100 microM, making them a promising candidate for biomedical applications such as fluorescent imaging. The minimum Eu concentration needed for a conventional confocal imaging was estimated to be approximately 0.1 mM. Therefore, D-glucuronic acid coated Eu(OH)3 nanorods can be applied to fluorescent imaging. However, a very tiny magnetization of approximately 1.2 emu/g at room temperature and at an applied field of 5 tesla was observed. As a result, very small r1 and r2 water proton relaxivities were estimated, implying that surface coated Eu(OH)3 nanorods are not sufficient for MRI contrast agents.