Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 47(9-10): 801-813, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32221720

RESUMO

The valorization of lignin is critical for the economic viability of the bioeconomy. Microbial metabolism is advantageous for handling the myriad of aromatic compounds resulting from lignin chemical or enzymatic depolymerization. Coupling aromatic metabolism to fatty acid biosynthesis makes possible the production of biofuels, oleochemicals, and other fine/bulk chemicals derived from lignin. Our previous work identified Cutaneotrichosporon oleaginosus as a yeast that could accumulate nearly 70% of its dry cell weight as lipids using aromatics as a sole carbon source. Expanding on this, other oleaginous yeast species were investigated for the metabolism of lignin-relevant monoaromatics. Thirty-six oleaginous yeast species from the Phaff yeast collection were screened for growth on several aromatic compounds representing S-, G-, and H- type lignin. The analysis reported in this study suggests that aromatic metabolism is largely segregated to the Cutaenotrichosporon, Trichosporon, and Rhodotorula clades. Each species tested within each clade has different properties with respect to the aromatics metabolized and the concentrations of aromatics tolerated. The combined analysis suggests that Cutaneotrichosporon yeast are the best suited to broad spectrum aromatic metabolism and support its development as a model system for aromatic metabolism in yeast.


Assuntos
Lignina , Leveduras , Basidiomycota/metabolismo , Biocombustíveis , Carbono/metabolismo , Lignina/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Compostos Orgânicos/metabolismo , Rhodotorula/metabolismo , Leveduras/metabolismo
2.
J Ind Microbiol Biotechnol ; 44(10): 1397-1413, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28681129

RESUMO

Microbial oils have been analyzed as alternatives to petroleum. However, just a handful of microbes have been successfully adapted to produce chemicals that can compete with their petroleum counterparts. One of the reasons behind the low success rate is the overall economic inefficiency of valorizing a single product. This study presents a lab-scale analysis of two yeast species that simultaneously produce multiple high-value bioproducts: intracellular triacylglycerols (TG) and extracellular polyol esters of fatty acids (PEFA), two lipid classes with immediate applications in the biofuels and surfactant industries. At harvest, the yeast strain Rhodotorula aff. paludigena UCDFST 81-84 secreted 20.9 ± 0.2 g L-1 PEFA and produced 8.8 ± 1.0 g L-1 TG, while the yeast strain Rhodotorula babjevae UCDFST 04-877 secreted 11.2 ± 1.6 g L-1 PEFA and 18.5 ± 1.7 g L-1 TG. The overall glucose conversion was 0.24 and 0.22 g(total lipid) g (glucose)-1 , respectively. The results present a stable and scalable microbial growth platform yielding multiple co-products.


Assuntos
Ésteres/metabolismo , Ácidos Graxos/metabolismo , Polímeros/metabolismo , Rhodotorula/metabolismo , Triglicerídeos/biossíntese , Biocombustíveis/provisão & distribuição , Glucose/metabolismo , Lipídeos/biossíntese , Rhodotorula/crescimento & desenvolvimento , Tensoativos/metabolismo
3.
FEMS Yeast Res ; 14(8): 1286-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25348480

RESUMO

Lignocellulosic plant biomass is the target feedstock for production of second-generation biofuels. Ionic liquid (IL) pretreatment can enhance deconstruction of lignocellulosic biomass into sugars that can be fermented to ethanol. Although biomass is typically washed following IL pretreatment, small quantities of residual IL can inhibit fermentative microorganisms downstream, such as the widely used ethanologenic yeast, Saccharomyces cerevisiae. The aim of this study was to identify yeasts tolerant to the IL 1-ethyl-3-methylimidazolium acetate, one of the top performing ILs known for biomass pretreatment. One hundred and sixty eight strains spanning the Ascomycota and Basidiomycota phyla were selected for screening, with emphasis on yeasts within or closely related to the Saccharomyces genus and those tolerant to saline environments. Based on growth in media containing 1-ethyl-3-methylimidazolium acetate, tolerance to IL levels ranging 1-5% was observed for 80 strains. The effect of 1-ethyl-3-methylimidazolium acetate concentration on maximum cell density and growth rate was quantified to rank tolerance. The most tolerant yeasts included strains from the genera Clavispora, Debaryomyces, Galactomyces, Hyphopichia, Kazachstania, Meyerozyma, Naumovozyma, Wickerhamomyces, Yarrowia, and Zygoascus. These yeasts included species known to degrade plant cell wall polysaccharides and those capable of ethanol fermentation. These yeasts warrant further investigation for use in saccharification and fermentation of IL-pretreated lignocellulosic biomass to ethanol or other products.


Assuntos
Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/efeitos dos fármacos , Basidiomycota/crescimento & desenvolvimento , Tolerância a Medicamentos , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Biocombustíveis , Biomassa , Meios de Cultura/química , Etanol/metabolismo , Fermentação , Lignina/metabolismo
4.
J Ind Microbiol Biotechnol ; 41(7): 1061-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24818698

RESUMO

Conversion of lignocellulosic hydrolysates to lipids using oleaginous (high lipid) yeasts requires alignment of the hydrolysate composition with the characteristics of the yeast strain, including ability to utilize certain nutrients, ability to grow independently of costly nutrients such as vitamins, and ability to tolerate inhibitors. Some combination of these characteristics may be present in wild strains. In this study, 48 oleaginous yeast strains belonging to 45 species were tested for ability to utilize carbon sources associated with lignocellulosic hydrolysates, tolerate inhibitors, and grow in medium without supplemented vitamins. Some well-studied oleaginous yeast species, as well as some that have not been frequently utilized in research or industrial production, emerged as promising candidates for industrial use due to ability to utilize many carbon sources, including Cryptococcus aureus, Cryptococcus laurentii, Hannaella aff. zeae, Tremella encephala, and Trichosporon coremiiforme. Other species excelled in inhibitor tolerance, including Candida aff. tropicalis, Cyberlindnera jadinii, Metschnikowia pulcherrima, Schwanniomyces occidentalis and Wickerhamomyces ciferrii. No yeast tested could utilize all carbon sources and tolerate all inhibitors tested. These results indicate that yeast strains should be selected based on characteristics compatible with the composition of the targeted hydrolysate. Other factors to consider include the production of valuable co-products such as carotenoids, availability of genetic tools, biosafety level, and flocculation of the yeast strain. The data generated in this study will aid in aligning yeasts with compatible hydrolysates for conversion of carbohydrates to lipids to be used for biofuels and other oleochemicals.


Assuntos
Carbono/metabolismo , Lignina/química , Lignina/metabolismo , Leveduras/efeitos dos fármacos , Leveduras/metabolismo , Biocombustíveis/provisão & distribuição , Furaldeído/análogos & derivados , Furaldeído/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Vitaminas , Leveduras/crescimento & desenvolvimento
5.
Appl Biochem Biotechnol ; 191(4): 1580-1593, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32185613

RESUMO

In previous studies of ionic liquid (IL) tolerance of numerous species of ascomycetous yeasts, two strains of Wickerhamomyces ciferrii and Galactomyces candidus had unusually high tolerance in media containing up to 5% (w/v) of the 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]). The study aimed at investigating whether additional strains of these species, and additional species in the Dipodascaceae family, also possess IL tolerance, and to compare sensitivity to the acetate and chloride versions of the ionic liquid. Fifty five yeast strains in the family Dipodascaceae, which encompasses genera Galactomyces, Geotrichum, and Dipodascus, and seven yeast strains of species Wickerhamomyces ciferrii were tested for ability to grow in laboratory medium containing no IL, 242 mM [C2C1Im][OAc], or 242 mM [C2C1Im]Cl, and in IL-pretreated switchgrass hydrolysate. Many yeasts exhibited tolerance of one or both ILs, with higher tolerance of the chloride anion than of the acetate anion. Different strains of the same species exhibited varying degrees of IL tolerance. Galactomyces candidus, UCDFSTs 52-260, and 50-64, had exceptionally robust growth in [C2C1Im][OAc], and also grew well in the switchgrass hydrolysate. Identification of IL tolerant and IL resistant yeast strains will facilitate studies of the mechanism of IL tolerance, which could include superior efflux, metabolism or exclusion.


Assuntos
Geotrichum/metabolismo , Líquidos Iônicos/química , Saccharomycetales/metabolismo , Algoritmos , Biocombustíveis , Meios de Cultura , Imidazóis , Microbiologia Industrial , Lignina/química , Filogenia , Hidrolisados de Proteína/química , RNA Ribossômico/metabolismo , Leveduras/metabolismo
6.
Biotechnol Adv ; 36(2): 397-414, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29309812

RESUMO

Extracellular fungal glycolipid biosurfactants have attracted attention because productivities can be high, cheap substrates can be used, the molecules are secreted into the medium and the downstream processing is relatively simple. Three classes of extracellular fungal glycolipid biosurfactants have provided most of the scientific advances in this area, namely sophorolipids, mannosylerythritol lipids and cellobioselipids. Polyol lipids, a fourth class of extracellular fungal glycolipid biosurfactants, comprise two groups of molecules: liamocins produced by the yeast-like fungus Aureobasidium pullulans, and polyol esters of fatty acids, produced by some Rhodotorula yeast species. Both are amphiphilic, surface active molecules with potential for commercial development as surfactants for industrial and household applications. The current knowledge of polyol lipids highlights an emerging group of extracellular fungal glycolipid biosurfactants and provides a perspective of what next steps are needed to harness the benefits and applications of this novel group of molecules.


Assuntos
Espaço Extracelular , Fungos , Lipídeos , Polímeros , Reatores Biológicos , Espaço Extracelular/química , Espaço Extracelular/metabolismo , Fungos/química , Fungos/metabolismo , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA