Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Langmuir ; 35(36): 11891-11901, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31408350

RESUMO

We report on the discovery of a new organized lipid-nucleic acid phase upon intercalation of blunt duplexes of short DNA (sDNA) within cationic multilayer fluid membranes. End-to-end interactions between sDNA leads to columnar stacks. At high membrane charge density, with the inter-sDNA column spacing (dsDNA) comparable but larger than the diameter of sDNA, a 2D columnar phase (i.e., a 2D smectic) is found similar to the phase in cationic liposome-DNA complexes with long lambda-phage DNA. Remarkably, with increasing dsDNA as the membrane charge density is lowered, a transition is observed to a 3D columnar phase of stacked sDNA. This occurs even though direct DNA-DNA electrostatic interactions across layers are screened by diffusing cationic lipids near the phosphate groups of sDNA. Softening of the membrane bending rigidity (κ), which further promotes membrane undulations, significantly enhances the 3D columnar phase. These observations are consistent with a model by Schiessel and Aranda-Espinoza where local membrane undulations, due to electrostatically induced membrane wrapping around sDNA columns, phase lock from layer-to-layer, thereby precipitating coherent "crystal-like" undulations coupled to sDNA columns with long-range position and orientation order. The finding that this new phase is stable at large dsDNA and enhanced with decreasing κ is further supportive of the model where the elastic cost of membrane deformation per unit area around sDNA columns (∝ κh2/dsDNA4, h2 = sum of square of amplitudes of the inner and outer monolayer undulations) is strongly reduced relative to the favorable electrostatic attractions of partially wrapped membrane around sDNA columns. The findings have broad implications in the design of membrane-mediated assembly of functional nanoparticles in 3D.


Assuntos
DNA/química , Ácidos Graxos Monoinsaturados/química , Fosfatidilcolinas/química , Compostos de Amônio Quaternário/química , Lipossomos/química , Tamanho da Partícula , Propriedades de Superfície
2.
Biomacromolecules ; 19(7): 2401-2408, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29689154

RESUMO

Microtubule dynamics play a critical role in the normal physiology of eukaryotic cells as well as a number of cancers and neurodegenerative disorders. The polymerization/depolymerization of microtubules is regulated by a variety of stabilizing and destabilizing factors, including microtubule-associated proteins and therapeutic agents (e.g., paclitaxel, nocodazole). Here we describe the ability of the osmolytes polyethylene glycol (PEG) and trimethylamine- N-oxide (TMAO) to inhibit the depolymerization of individual microtubule filaments for extended periods of time (up to 30 days). We further show that PEG stabilizes microtubules against both temperature- and calcium-induced depolymerization. Our results collectively suggest that the observed inhibition may be related to combination of the kosmotropic behavior and excluded volume/osmotic pressure effects associated with PEG and TMAO. Taken together with prior studies, our data suggest that the physiochemical properties of the local environment can regulate microtubule depolymerization and may potentially play an important role in in vivo microtubule dynamics.


Assuntos
Microtúbulos/química , Osmose , Tubulina (Proteína)/química , Animais , Cálcio/química , Metilaminas/química , Metilaminas/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Polimerização , Multimerização Proteica/efeitos dos fármacos
3.
J Am Chem Soc ; 133(19): 7585-95, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21520947

RESUMO

We report the formation of liquid crystalline (LC) phases of short double-stranded DNA with nonpairing (nonsticky) overhangs, confined between two-dimensional (2D) lipid bilayers of cationic liposome-DNA complexes. In a landmark study (Science2007, 318, 1276), Nakata et al. reported on the discovery of strong end-to-end stacking interactions between short DNAs (sDNAs) with blunt ends, leading to the formation of 3D nematic (N) and columnar LC phases. Employing synchrotron small-angle X-ray scattering, we have studied the interplay between shape anisotropy-induced and DNA end-to-end interaction-induced N ordering for 11, 24, and 48 bp sDNA rods with single-stranded oligo-thymine (T) overhangs modulating the end-to-end interactions. For suppressed stacking interactions with 10-T overhangs, the volume fraction of sDNA at which the 2D isotropic (I)-to-N transition occurs for 24 and 48 bp sDNA rods depended on their length-to-width (L/D) shape anisotropy, qualitatively consistent with Onsager's theory for the entropic alignment of rigid rods. As the overhang length is reduced from 10 to 5 and 2 T for 24 and 48 bp sDNA, the N-to-I transition occurs at lower volume fractions, indicating the onset of some degree of end-to-end stacking interactions. The 11 bp sDNA rods with 5- and 10-T overhangs remain in the I phase, consistent with their small shape anisotropy (L/D ≈ 1.9) below the limit for Onsager LC ordering. Unexpectedly, in contrast to the behavior of 24 and 48 bp sDNA, the end-to-end interactions between 11 bp sDNA rods with 2-T overhangs set in dramatically, and a novel 2D columnar N phase (N(C)) with finite-length columns formed. The building blocks of this phase are comprised of 1D stacks of (on average) four 11 bp DNA-2T rods with an effective L(stacked)/D ≈ 8.2. Our findings have implications for the DNA-directed assembly of nanoparticles on 2D platforms via end-to-end interactions and in designing optimally packed LC phases of short anisotropic biomolecules (such as peptides and short-interfering RNAs) on nanoparticle membranes, which are used in gene silencing and chemical delivery.


Assuntos
DNA/química , Lipossomos/química , Cristais Líquidos/química , Modelos Biológicos , Cátions
4.
J Am Chem Soc ; 132(47): 16841-7, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21028803

RESUMO

RNA interference (RNAi) is an evolutionarily conserved sequence-specific post-transcriptional gene silencing pathway with wide-ranging applications in functional genomics, therapeutics, and biotechnology. Cationic liposome-small interfering RNA (CL-siRNA) complexes have emerged as vectors of choice for delivery of siRNA, which mediates RNAi. However, siRNA delivery by CL-siRNA complexes is often inefficient and accompanied by lipid toxicity. We report the development of CL-siRNA complexes with a novel cubic phase nanostructure, which exhibit efficient silencing at low toxicity. The inverse bicontinuous gyroid cubic nanostructure was unequivocally established from synchrotron X-ray scattering data, while fluorescence microscopy revealed colocalization of lipid and siRNA in complexes. We attribute the efficient silencing to enhanced fusion of complex and endosomal membranes, facilitated by the cubic phase membrane's positive Gaussian modulus, which may enable spontaneous formation of transient pores. The findings underscore the importance of understanding membrane-mediated interactions between CL-siRNA complex nanostructure and cell components in developing CL-based gene silencing vectors.


Assuntos
Lipossomos/química , Lipossomos/metabolismo , Nanoestruturas/química , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Lipossomos/toxicidade , Camundongos , Microscopia , Modelos Moleculares , Conformação Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Top Curr Chem ; 296: 191-226, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21504103

RESUMO

Motivated by the promises of gene therapy, there is great interest in developing non-viral lipid-based vectors for therapeutic applications due to their low immunogenicity, low toxicity, ease of production, and the potential of transferring large pieces of DNA into cells. In fact, cationic liposome (CL) based vectors are among the prevalent synthetic carriers of nucleic acids (NAs) currently used in gene therapy clinical trials worldwide. These vectors are studied both for gene delivery with CL-DNA complexes and gene silencing with CL-siRNA (short interfering RNA) complexes. However, their transfection efficiencies and silencing efficiencies remain low compared to those of engineered viral vectors. This reflects the currently poor understanding of transfection-related mechanisms at the molecular and self-assembled levels, including a lack of knowledge about interactions between membranes and double stranded NAs and between CL-NA complexes and cellular components. In this review we describe our recent efforts to improve the mechanistic understanding of transfection by CL-NA complexes, which will help to design optimal lipid-based carriers of DNA and siRNA for therapeutic gene delivery and gene silencing.


Assuntos
Inativação Gênica , Lipossomos/metabolismo , Ácidos Nucleicos/genética , Plasmídeos/genética , Transfecção/métodos , Cátions/química , Cátions/metabolismo , Lipossomos/química , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
6.
Methods Mol Biol ; 433: 159-75, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18679623

RESUMO

A large amount of research activity worldwide is currently directed towards developing lipid- or polymer-based, non-viral gene vectors for therapeutic applications. This strong interest is motivated by their low toxicity, ease of production, ability to transfer large pieces of DNA into cells, and lack of immunogenic protein components. Cationic liposomes (CLs) are one of the most powerful non-viral vectors. In fact, CL-based vectors are among the prevalent synthetic carriers of nucleic acids currently used in human clinical gene therapy trials as well as in cell transfection applications for biological research. Our understanding of the mechanisms of action of CL-DNA complexes is still in its infancy. However, the relevance of a few crucial parameters, such as the lipid/DNA charge ratio (rho(chg)) and the membrane charge density of lamellar complexes (sigma(M)), is well established. To arrive at true comparisons of lipid performance, one must optimize both these parameters using a reproducible, reliable transfection assay. In this chapter, we aim to provide the reader with detailed procedures for liposome formation and transfection. It is our hope that the use of such optimized protocols will improve the comparability of transfection data obtained with novel lipids.


Assuntos
Cátions/metabolismo , DNA/metabolismo , Lipossomos/metabolismo , Transfecção/métodos
7.
Nanoscale ; 7(25): 10998-1004, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25939271

RESUMO

We describe for the first time how biological nanomotors may be used to actively self-assemble mesoscale networks composed of diblock copolymer nanotubes. The collective force generated by multiple kinesin nanomotors acting on a microtubule filament is large enough to overcome the energy barrier required to extract nanotubes from polymer vesicles comprised of poly(ethylene oxide-b-butadiene) in spite of the higher force requirements relative to extracting nanotubes from lipid vesicles. Nevertheless, large-scale polymer networks were dynamically assembled by the motors. These networks displayed enhanced robustness, persisting more than 24 h post-assembly (compared to 4-5 h for corresponding lipid networks). The transport of materials in and on the polymer membranes differs substantially from the transport on analogous lipid networks. Specifically, our data suggest that polymer mobility in nanotubular structures is considerably different from planar or 3D structures, and is stunted by 1D confinement of the polymer subunits. Moreover, quantum dots adsorbed onto polymer nanotubes are completely immobile, which is related to this 1D confinement effect and is in stark contrast to the highly fluid transport observed on lipid tubules.


Assuntos
Cinesinas/metabolismo , Microtúbulos/metabolismo , Nanotubos/química , Polímeros/metabolismo , Cinesinas/química , Microtúbulos/química , Nanotecnologia , Polímeros/química , Pontos Quânticos
8.
Biochemistry ; 46(16): 4785-92, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17391006

RESUMO

Small interfering RNAs (siRNAs) of 19-25 bp mediate the cleavage of complementary mRNA, leading to post-transcriptional gene silencing. We examined cationic lipid (CL)-mediated delivery of siRNA into mammalian cells and made comparisons to CL-based DNA delivery. The effect of lipid composition and headgroup charge on the biophysical and biological properties of CL-siRNA vectors was determined. X-ray diffraction revealed that CL-siRNA complexes exhibited lamellar and inverted hexagonal phases, qualitatively similar to CL-DNA complexes, but also formed other nonlamellar structures. Surprisingly, optimally formulated inverted hexagonal 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)/1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) CL-siRNA complexes exhibited high toxicity and much lower target-specific gene silencing than lamellar CL-siRNA complexes even though optimally formulated, inverted hexagonal CL-DNA complexes show high transfection efficiency in cell culture. We further found that efficient silencing required cationic lipid/nucleic acid molar charge ratios (rhochg) nearly an order of magnitude larger than those yielding efficiently transfecting CL-DNA complexes. This second unexpected finding has implications for cell toxicity. Multivalent lipids (MVLs) require a smaller number of cationic lipids at a given rhochg of the complex. Consistent with this observation, the pentavalent lipid MVL5 exhibited lower toxicity and superior silencing efficiency over a large range in both the lipid composition and rhochg when compared to monovalent DOTAP. Most importantly, MVL5 achieved much higher total knockdown of the target gene in CL-siRNA complex regimes where toxicity was low. This property of CL-siRNA complexes contrasts to CL-DNA complexes, where the optimized transfection efficiencies of multivalent and monovalent lipids are comparable.


Assuntos
Ácidos Graxos Monoinsaturados/química , Inativação Gênica/fisiologia , Fosfatidiletanolaminas/química , Compostos de Amônio Quaternário/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/fisiologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Inativação Gênica/efeitos dos fármacos , Células L , Lipossomos/química , Camundongos , Fosfatidiletanolaminas/farmacologia , Compostos de Amônio Quaternário/farmacologia , RNA Interferente Pequeno/farmacologia , Difração de Raios X
9.
J Am Chem Soc ; 128(12): 3998-4006, 2006 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-16551108

RESUMO

Gene therapy holds great promise as a future approach to fighting disease and is explored in worldwide clinical trials. Cationic liposome (CL)-DNA complexes are a prevalent nonviral delivery vector, but their efficiency requires improvement and the understanding of their mechanism of action is incomplete. As part of our effort to investigate the structure-transfection efficiency relationships of self-assembled CL-DNA vectors, we have synthesized a new, highly charged (16+) multivalent cationic lipid, MVLBG2, with a dendritic headgroup. Our synthetic scheme allows facile variation of the headgroup charge and the spacer connecting hydrophobic and headgroup moieties as well as gram-scale synthesis. Complexes of DNA with mixtures of MVLBG2 and neutral 1,2-dioleoyl-sn-glycerophosphatidylcholine (DOPC) exhibit the well-known lamellar phase at 90 mol % DOPC. Starting at 20 mol % dendritic lipid, however, two novel nonlamellar phases are observed by synchrotron X-ray diffraction. The structure of one of these phases, present in a narrow range of composition around 25 mol % MVLBG2, has been solved. In this novel dual lattice structure, termed H(I)C, hexagonally arranged tubular lipid micelles are surrounded by DNA rods forming a three-dimensionally continuous substructure with honeycomb symmetry. Complexes in the H(I)C phase efficiently transfect mouse and human cells in culture. Their transfection efficiency, as well as that of the lamellar complexes containing only 10 mol% dendritic lipid, reaches and surpasses that of commercially available, optimized DOTAP-based complexes. In particular, complexes containing MVLBG2 are significantly more transfectant over the entire composition range in mouse embryonic fibroblasts, a cell line empirically known to be hard to transfect.


Assuntos
DNA/química , Dendrímeros/química , Técnicas de Transferência de Genes , Lipídeos/química , Lipossomos/química , Animais , Cátions , DNA/administração & dosagem , DNA/genética , Dendrímeros/administração & dosagem , Etídio/química , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/administração & dosagem , Lipossomos/administração & dosagem , Camundongos , Micelas , Modelos Moleculares , Fosfatidilcolinas/administração & dosagem , Fosfatidilcolinas/química , Fosfatidiletanolaminas/administração & dosagem , Fosfatidiletanolaminas/química , Transfecção/métodos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA