Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Chem ; 458: 140284, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38970952

RESUMO

Lignin nanoparticles (LNP), extracted from spent materials of Dashamoola Arishta (Ayurvedic formulation), shared a molecular weight of 14.42 kDa with commercial lignin. Processed into LNPs (496.43 ± 0.54 nm) via planetary ball milling, they demonstrated stability at pH 8.0 with a zeta potential of -32 ± 0.27 mV. Operating as Pickering particles, LNP encapsulated curcumin and vitamin D3 in sunflower oil, forming LnE + Cu + vD3 nanoemulsions (particle size: 347.40 ± 0.71 nm, zeta potential: -42.27 ± 0.72 mV) with high encapsulation efficiencies (curcumin: 87.95 ± 0.21%, vitamin D3: 72.66 ± 0.11%). The LnE + Cu + vD3 emulsion exhibited stability without phase separation over 90 days at room (27 ± 2 °C) and refrigeration (4 ± 1 °C) temperatures. Remarkably, LnE + Cu + vD3 exhibited reduced toxicity, causing 29.32% and 34.99% cell death in L6 and RAW264.7 cells respectively, at the highest concentration (50 µg/mL). This underscores the potential valorization of Ayurvedic industry spent materials for diverse industrial applications.


Assuntos
Colecalciferol , Curcumina , Emulsões , Lignina , Nanopartículas , Tamanho da Partícula , Curcumina/química , Nanopartículas/química , Lignina/química , Emulsões/química , Colecalciferol/química , Camundongos , Animais , Composição de Medicamentos , Células RAW 264.7 , Extratos Vegetais/química , Resíduos/análise , Ratos , Resíduos Industriais/análise
2.
Food Res Int ; 172: 113135, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689899

RESUMO

The poor water solubility and rhein (RH) stability limit its application in the functional food industry. In the present study, the RH-loaded water-in-oil-in-water nano emulsion and microcapsules were prepared using the conjugates of pullulan-Jiuzao glutelin (JG) (m/m, 2:1, PJC-2) obtained by Maillard reaction and enteric-soluble materials (polymethlacrylic acid, hydroxypropyl methylcellulose phthalate, cellulose acetate phthalate, and D-mannitol). The effects of different formulations on the microstructure, physicochemical properties, and storage stability of microcapsules were analyzed. The results showed that microcapsules exhibited stability against different external environments. The encapsulation efficiency of RH in the four enteric-soluble-PJC-2 double-deck microcapsules (70.03 ± 3.24%-91.08 ± 4.78%) was significantly improved than PJC-2 ones (61.84 ± 0.47%). The antioxidant activity and stability of RH in the microcapsules were improved (ABTS, 49.7%-113.93%; DPPH, 40.85%-101.82%; FRA, 62.32%-126.42%; and FCA, 70.58%-147.20%) after in vitro simulated digestion and extreme environmental conditions compared to free RH. This work provides a microcapsule based on PJC-2 with enteric-soluble materials for insoluble functional ingredients to improve solubility, stability, and bioactivity in the food industry.


Assuntos
Glutens , Reação de Maillard , Cápsulas , Biopolímeros
3.
World J Microbiol Biotechnol ; 28(6): 2293-302, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22806103

RESUMO

Nine co-cultures of the Bifidobacterium and Lactobacillus species were tested for their ability to adhere to insoluble dietary fibre (IDF1, IDF2), soluble dietary fibre (SDF1, SDF2), and total dietary fibre (TDF1, TDF2) from two rice varieties (RR1 and RR2). Combinations of the same genus (BB + BL and LA + LR) showed 30-40 % (poor) adhesion, and combinations of different genera showed 40-50 % (moderate) adhesion, which is significantly higher (p < 0.05) than the combinations of same genus. The increase in adhesion with species from different genera suggests some synergistic activity. The microbial combinations had the ability to adhere to dietary fibre fractions as early as 30 min. Colonization of rice fibre by bacterial cells was affected by the temperature, with adhesion being higher at 37 °C than at room temperature. The optimal pH value for adhesion was 4.2-4.5. This study observed that the combinations tested had a moderate percentage of adhesion in the presence of bile, low pH (4.3-4.5) and pancreatin, irrespective of the type of co-culture. In addition, adhesion was not affected by an increase in NaCl and Tween 80. Adhesion was affected by disaccharides and polysaccharides. The amount of adhesion of co-cultures was not significantly affected by the substrate (p > 0.05). Results indicated that rice fibre fractions are suitable hosts for the probiotics tested.


Assuntos
Bifidobacterium/fisiologia , Fibras na Dieta , Lactobacillus/fisiologia , Oryza/química , Aderência Bacteriana/efeitos dos fármacos , Dissacarídeos/farmacologia , Concentração de Íons de Hidrogênio , Polissacarídeos/farmacologia , Polissorbatos/farmacologia , Probióticos , Cloreto de Sódio/farmacologia
4.
Food Chem ; 324: 126837, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32339791

RESUMO

Evidences have shown that phytosome assemblies are novel drug delivery system. However, studies of phytosomes in food applications are scarce. The characteristics of milk phospholipid assemblies and their functionality in terms of in vitro digestibility and bioavailability of encapsulated nutrients (ascorbic acid and α-tocopherol) were studied. The phytosomes were fabricated using ethanolic evaporation technique. Spectral analysis revealed that polar parts of phospholipids formed hydrogen bonds with ascorbic acid hydroxyl groups, further, incorporating ascorbic acid or α-tocopherol into the phospholipid assembly changed the chemical conformation of the complexes. Phospholipid-ascorbic acid phytosomes yielded an optimal complexing index of 98.52 ± 0.03% at a molar ratio of 1:1. Phytosomes exhibited good biocompatibility on intestinal epithelial cells. The cellular uptake of ascorbic acid was 29.06 ± 1.18% for phytosomes. It was higher than that for liposomes (24.14 ± 0.60%) and for ascorbic acid aqueous solution (1.17 ± 0.70%).


Assuntos
Antioxidantes/química , Ácido Ascórbico/química , Lipossomos/química , Leite/química , Fosfolipídeos/química , alfa-Tocoferol/química , Animais , Ácido Ascórbico/farmacocinética , Varredura Diferencial de Calorimetria , Linhagem Celular , Liberação Controlada de Fármacos , Células Epiteliais/efeitos dos fármacos , Ligação de Hidrogênio , Absorção Intestinal/efeitos dos fármacos , Fosfolipídeos/farmacocinética , Ratos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA