Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pathology ; 55(3): 329-334, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36428107

RESUMO

Central giant cell granulomas (CGCG) are rare intraosseous osteolytic lesions of uncertain aetiology. Despite the benign nature of this neoplasia, the lesions can rapidly grow and become large, painful, invasive, and destructive. The identification of molecular drivers could help in the selection of targeted therapies for specific cases. TRPV4, KRAS and FGFR1 mutations have been associated with these lesions but no correlation between the mutations and patient features was observed so far. In this study, we analysed 17 CGCG cases of an Italian cohort and identified an interesting and significant (p=0.0021) correlation between FGFR1 mutations and age. In detail, FGFR1 mutations were observed frequently and exclusively in CGCG from young (<18 years old) patients (4/5 lesions, 80%). Furthermore, the combination between ours and previously published data confirmed a significant difference in the frequency of FGFR1 mutations in CGCG from patients younger than 18 years at the time of diagnosis (9/23 lesions, 39%) when compared to older patients (1/31 lesions, 0.03%; p=0.0011), thus corroborating our observation in a cohort of 54 patients. FGFR1 variants in young CGCG patients could favour fast lesion growth, implying that they seek medical attention earlier. Our observation might help prioritise candidates for FGFR1 testing, thus opening treatment options with FGFR inhibitors.


Assuntos
Granuloma de Células Gigantes , Humanos , Adolescente , Granuloma de Células Gigantes/genética , Granuloma de Células Gigantes/diagnóstico , Granuloma de Células Gigantes/patologia , Taxa de Mutação , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
2.
Pharmaceutics ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717104

RESUMO

Interdental papilla are an interesting source of mesenchymal stromal cells (GinPaMSCs), which are easy to isolate and expand in vitro. In our laboratory, GinPaMSCs were isolated, expanded, and characterized by studying their secretome before and after priming with paclitaxel (PTX). The secretome of GinPaMSCs did not affect the growth of cancer cell lines tested in vitro, whereas the secretome of GinPaMSCs primed with paclitaxel (GinPaMSCs/PTX) exerted a significant anticancer effect. GinPaMSCs were able to uptake and then release paclitaxel in amounts pharmacologically effective against cancer cells, as demonstrated in vitro by the direct activity of GinPaMSCs/PTX and their secretome against both human pancreatic carcinoma and squamous carcinoma cells. PTX was associated with extracellular vesicles (EVs) secreted by cells (EVs/PTX), suggesting that PTX is incorporated into exosomes during their biogenesis. The isolation of mesenchymal stromal cells (MSCs) from gingiva is less invasive than that from other tissues (such as bone marrow and fat), and GinPaMSCs provide an optimal substrate for drug-priming to obtain EVs/PTX having anticancer activity. This research may contribute to develop new strategies of cell-mediated drug delivery by EVs that are easy to store without losing function, and could have a superior safety profile in therapy.

3.
J Control Release ; 302: 2-18, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30890444

RESUMO

Localization of chemotherapy at the tumor site can improve therapeutic efficacy and reduce systemic toxicity. In previous studies we have shown that mesenchymal stromal cells (MSCs) isolated from bone marrow or adipose tissue can be loaded with the anti-cancer drug Paclitaxel (PTX) and kill cancer cells when localized nearby. We here investigated the capacity of human micro-fragmented adipose tissue (MFAT), used as a natural scaffold of MSCs, to deliver PTX with the idea to improve local drug concentration and to prolong the therapeutic activity. Surprisingly, we found that both fresh but also devitalized MFAT (DMFAT) (by freezing/thawing procedure) were able to deliver and release significant amount of PTX, killing several human cancer cell lines in vitro with a long lasting activity. In an orthotopic mice model of Neuroblastoma (NB) transplant, DMFAT loaded with PTX prevents or delays NB relapse when placed in the surgical area of tumor resection, without any collateral toxicity. We concluded that MFAT, but also DMFAT, may represent very innovative natural biomaterials able to localize and release anti-cancer molecules at the tumor site, helping to fight cancer in human.


Assuntos
Tecido Adiposo/química , Antineoplásicos/química , Produtos Biológicos/química , Portadores de Fármacos/química , Neuroblastoma/tratamento farmacológico , Paclitaxel/química , Tecido Adiposo/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Produtos Biológicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Corantes Fluorescentes/química , Humanos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Imagem Óptica , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Conformação Proteica
4.
Artigo em Inglês | MEDLINE | ID: mdl-29240214

RESUMO

The success of dental implants depends mainly on osseointegration and gingival sealing. Therefore, early attachment and spreading of epithelial cells might be critical for a positive outcome. Research in dental implant materials has primarily focused on surface roughness, defined by the average roughness (Ra) index, as it promotes the process of osseointegration. This study explored its influence on soft tissue attachment by looking mainly at adhesion, proliferation, and spreading of primary human cells belonging to the epithelial lineage. Characterized human gingival keratinocytes, gingival and epithelial progenitor cells were seeded on machined (S1; Ra = 0.3 to 0.6 µm), Ti-Unite (S2; Ra = 1.2 µm), and SLA (S3; Ra = 2 µm) implants. Cell adhesion with early proliferation and spreading were evaluated by combining a biochemical vitality test with imaging analyses. Findings showed that adhesion was significantly higher on S1 (36% ± 2%) and S2 (44% ± 7%) than on S3 (23% ± 6%), while early proliferation was slightly improved on S1. The resulting data, obtained through an innovative and easily reproducible in vitro method, suggest that implant surface roughness affects epithelial cell adhesion and proliferation.


Assuntos
Adesão Celular , Proliferação de Células , Implantes Dentários , Gengiva/citologia , Queratinócitos/fisiologia , Células-Tronco/fisiologia , Células Cultivadas , Humanos , Propriedades de Superfície
5.
Sci Rep ; 7(1): 9376, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839168

RESUMO

Human mesenchymal stromal cells (MSCs) have been widely investigated both for regenerative medicine and their antinflammatory/immunomodulatory capacity. However, their ability to home pathological tissues suggested the development of strategies for using MSCs as carrier to deliver drug into tumor microenvironment. MSCs obtained from different tissues can be loaded in vitro with anti-cancer drugs by a simple procedures. In this report, we studied MSCs isolated and expanded from gingival papilla (GinPa-MSCs), by testing their ability to uptake and release three important anti-neoplastic drugs: Paclitaxel (PTX), Doxorubicin (DXR) and Gemcitabine (GCB). The efficacy of drugs releasing GinPa-MSCs was studied on a pancreatic cancer cell line and confirmed in vitro against a line of tongue squamous cell carcinoma (SCC154). Our results demonstrated that GinPa-MSCs efficiently incorporate the drugs and then released them in active form and in sufficient amount to produce a dramatic inhibition of squamous cell carcinoma growth in vitro. If compared with other MSCs sources, the collection of GinPa-MSCs is poorly invasive and cells can be easily expanded and efficiently loaded with anti cancer drugs. In particular, gemcitabine loaded GinPa-MSCs provide a good "cell-mediated drug delivery system" for a future potential application in the context of the oral oncology.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/metabolismo , Comunicação Celular , Gengiva/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neoplasias Bucais/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos
6.
Expert Opin Drug Deliv ; 13(6): 789-98, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26986001

RESUMO

OBJECTIVE: Gingival tissue is composed of cell types that contribute to the body's defense against many agents in oral environment, wound healing and tissue regeneration. Thanks to their easy and scarcely invasive withdrawal procedure, interdental papilla provide a good source of mesenchymal stromal cells (GinPa-MSCs). We isolated GinPa-MSCs and verified their ability to uptake/release the anticancer agent Paclitaxel (PTX). METHODS: In vitro expanded GinPa-MSCs were characterized for CD markers by FACS, tested for differentiation ability and analyzed by TEM. Their ability to uptake/release PTX was assessed according to a standardized procedure. RESULTS: The CD expression and chondro-adipo-osteo differentiation ability confirmed the mesenchymal feature of GinPa-MSCs. Surprisingly, 28% of GinPa-MSCs expressed CD14 marker and had an impressive pinocytotic activity. GinPa-MSCs were able to take up and release a sufficient amount of PTX to demonstrate effective in vitro activity against pancreatic carcinoma cells, suggesting that the drug was not inactivated. CONCLUSIONS: The procedure to obtain MSCs from interdental papilla is less invasive than that used for both bone marrow and adipose tissue, GinPa-MSCs are easy to expand and can be efficiently loaded with PTX. Taken together these qualities suggest that GinPa-MSCs may prove to be a good tool for cell-mediated drug delivery in cancer, particularly if related to stomatognathic system.


Assuntos
Sistemas de Liberação de Medicamentos , Gengiva/citologia , Células-Tronco Mesenquimais/citologia , Paclitaxel/administração & dosagem , Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Cicatrização/efeitos dos fármacos
7.
Stem Cell Res Ther ; 4(6): 148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24330736

RESUMO

INTRODUCTION: Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. METHODS: ASCs were isolated from interscapular subcutaneous adipose tissue (ScI) and buccal fat pads of six swine. Cells were characterized for their stemness and multipotent features. Moreover, their osteogenic ability when cultured on titanium disks and silicon carbide-plasma-enhanced chemical vapor-deposition fragments, and their growth in the presence of autologous and heterologous serum were also assessed. RESULTS: Independent of the harvesting site, no differences in proliferation, viability, and clonogenicity were observed among all the pASC populations. Furthermore, when induced toward osteogenic differentiation, both ScI- and BFP-pASCs showed an increase of collagen and calcified extracellular matrix (ECM) production, alkaline phosphatase activity, and osteonectin expression, indicating their ability to differentiate toward osteoblast-like cells. In addition, they differentiated toward adipocyte-like cells, and chondrogenic induced pASCs were able to increase glycosaminoglycans (GAGs) production over time. When cells were osteoinduced on synthetic biomaterials, they significantly increased the amount of calcified ECM compared with control cells; moreover, titanium showed the osteoinductive effect on pASCs, also without chemical stimuli. Finally, these cells grew nicely in 10% FBS, and no benefits were produced by substitution with swine serum. CONCLUSIONS: Swine buccal fat pad contains progenitor cells with mesenchymal features, and they also osteo-differentiate nicely in association with synthetic supports. We suggest that porcine BFP-ASCs may be applied in preclinical studies of periodontal and bone-defect regeneration.


Assuntos
Tecido Adiposo/citologia , Células-Tronco/citologia , Gordura Subcutânea/citologia , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Células Cultivadas , Condrogênese , Colágeno/metabolismo , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Doenças da Boca/cirurgia , Osteogênese , Osteonectina/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Suínos , Engenharia Tecidual
8.
Biores Open Access ; 2(2): 107-17, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593563

RESUMO

Adipose-derived stem/stromal cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Since Bichat's fat pad is easily accessible for dentists and maxillo-facial surgeons, we compared the features of ASCs from Bichat's fat pad (BFP-ASCs) with human ASCs from subcutaneous adipose tissue (SC-ASCs). BFP-ASCs isolated from a small amount of tissue were characterized for their stemness and multidifferentiative ability. They showed an important clonogenic ability and the typical mesenchymal stem cell immunophenotype. Moreover, when properly induced, osteogenic and adipogenic differentiation markers, such as alkaline phosphatase activity, collagen deposition and lipid vacuoles formation, were promptly observed. Growth of both BFP-ASCs and SC-ASCs in the presence of human serum and their adhesion to natural and synthetic scaffolds were also assessed. Both types of ASCs adapted rapidly to human autologous or heterologous sera, increasing their proliferation rate compared to standard culture condition, and all the cells adhered finely to bone, periodontal ligament, collagen membrane, and polyglycol acid filaments that are present in the oral cavity or are commonly used in oral surgery. At last, we showed that amelogenin seems to be an early osteoinductive factor for BFP-ASCs, but not SC-ASCs, in vitro. We conclude that Bichat's fat pad contains BFP-ASCs with stemness features that are able to differentiate and adhere to biological supports and synthetic materials. They are also able to proliferate in the presence of human serum. For all these reasons we propose BFP-ASCs for future therapies of periodontal defects and bone regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA