Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Tissue Res ; 395(2): 133-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051351

RESUMO

Diabetic foot ulcers (DFU) are a type of chronic wound that constitute one of the most serious and debilitating complications associated with diabetes. The lack of clinically efficacious treatments to treat these recalcitrant wounds can lead to amputations for those worst affected. Biomaterial-based approaches offer great hope in this regard, as they provide a template for cell infiltration and tissue repair. However, there is an additional need to treat the underlying pathophysiology of DFUs, in particular insufficient vascularization of the wound which significantly hampers healing. Thus, the addition of pro-angiogenic moieties to biomaterials is a promising strategy to promote the healing of DFUs and other chronic wounds. In this review, we discuss the potential of biomaterials as treatments for DFU and the approaches that can be taken to functionalise these biomaterials such that they promote vascularisation and wound healing in pre-clinical models.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Cicatrização , Pé Diabético/tratamento farmacológico , Matriz Extracelular
2.
Mol Biol Rep ; 51(1): 830, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037470

RESUMO

Diabetic foot ulcers (DFU) are a debilitating and life-threatening complication of Diabetes Mellitus. Ulceration develops from a combination of associated diabetic complications, including neuropathy, circulatory dysfunction, and repetitive trauma, and they affect approximately 19-34% of patients as a result. The severity and chronic nature of diabetic foot ulcers stems from the disruption to normal wound healing, as a result of the molecular mechanisms which underly diabetic pathophysiology. The current standard-of-care is clinically insufficient to promote healing for many DFU patients, resulting in a high frequency of recurrence and limb amputations. Biomaterial dressings, and in particular those derived from the extracellular matrix (ECM), have emerged as a promising approach for the treatment of DFU. By providing a template for cell infiltration and skin regeneration, ECM-derived biomaterials offer great hope as a treatment for DFU. A range of approaches exist for the development of ECM-derived biomaterials, including the use of purified ECM components, decellularisation and processing of donor/ animal tissues, or the use of in vitro-deposited ECM. This review discusses the development and assessment of ECM-derived biomaterials for the treatment of chronic wounds, as well as the mechanisms of action through which ECM-derived biomaterials stimulate wound healing.


Assuntos
Materiais Biocompatíveis , Pé Diabético , Matriz Extracelular , Cicatrização , Cicatrização/efeitos dos fármacos , Humanos , Matriz Extracelular/metabolismo , Animais , Pé Diabético/terapia
3.
Mol Pharm ; 9(11): 3099-106, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23013232

RESUMO

Gene therapy is a field that offers hope and promise for the treatment of diseases and traumas of a genetic nature and otherwise. However, progress toward the clinic has been delayed because of concerns over the safety of viral vectors and the efficacy of safer nonviral systems, which have low transfection efficacy and short transgene expression. This study describes the fabrication and characterization of a safe gene delivery reservoir system that has the potential to overcome issues associated with nonviral systems. Harnessing the electrostatic charges of collagen and polystyrene, microspheres were fabricated using a template-based method and characterized by microscopy techniques such as scanning electron microscopy, transmission electron microscopy, and atomic force microscopy, with the removal of the polystyrene template confirmed by Fourier transform infrared spectroscopy analysis. Loading and release of polyplexes confirmed the ability of the system to prolong polyplex delivery, with minimal cytotoxicity observed from viability studies on 3T3 fibroblasts. Finally, biological activity of released polyplexes was confirmed by reporter gene expression. Taken together, these properties indicate the potential of this system as a reservoir for gene delivery.


Assuntos
Dendrímeros/química , Matriz Extracelular/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Luciferases/metabolismo , Poliestirenos/química , Eletricidade Estática , Animais , Sobrevivência Celular , Células Cultivadas , Colágeno/química , Colágeno/metabolismo , Dendrímeros/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microesferas , Poliestirenos/metabolismo
4.
Biomaterials ; 194: 73-83, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30583150

RESUMO

Human induced pluripotent stem cell (hiPSC) derived angiogenesis models present a unique opportunity for patient-specific platforms to study the complex process of angiogenesis and the endothelial cell response to biomaterial and biophysical changes in a defined microenvironment. We present a refined method for differentiating hiPSCs into a CD31 + endothelial cell population (hiPSC-ECs) using a single basal medium from pluripotency to the final stage of differentiation. This protocol produces endothelial cells that are functionally competent in assays following purification. Subsequently, an in vitro angiogenesis model was developed by encapsulating the hiPSC-ECs into a tunable, growth factor sequestering hyaluronic acid (HyA) matrix where they formed stable, capillary-like networks that responded to environmental stimuli. Perfusion of the networks was demonstrated using fluorescent beads in a microfluidic device designed to study angiogenesis. The combination of hiPSC-ECs, bioinspired hydrogel, and the microfluidic platform creates a unique testbed for rapidly assessing the performance of angiogenic biomaterials.


Assuntos
Materiais Biocompatíveis/química , Células Endoteliais/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neovascularização Fisiológica , Diferenciação Celular , Linhagem Celular , Desenho de Equipamento , Humanos , Hidrogéis/química , Técnicas Analíticas Microfluídicas , Neovascularização Patológica
5.
Curr Opin Pharmacol ; 36: 34-43, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28806581

RESUMO

Ischemic disease caused by insufficient blood supply leads to a lack of oxygen and nutrients and a build-up of waste products in the affected tissue. Therapeutic angiogenesis, as a means to enhance perfusion of tissues with an inadequate blood supply, holds great promise for the treatment of ischemic disease. A wide range of factors that play a key role in physiological angiogenesis have been identified and trialed as pro-angiogenic agents. However, as yet pro-angiogenic treatments have failed to be translated clinically, owing to both lack of efficacy and safety concerns regarding the use of doses considerably larger than is typical present under physiological conditions. Thus, there is a clear need for the design and development of systems to overcome these hurdles and allow for the translation of safe and efficacious treatments to induce angiogenesis. In this regard, much progress has been made in the development of biomaterials as delivery systems for angiogenic factors to control the delivery and release of angiogenic therapies to induce vascularization. Thus, we review progress towards the development of translatable biomaterial-based systems to deliver angiogenic therapies, and point towards burgeoning advances in the field.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Neovascularização Fisiológica , Animais , Bioengenharia , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Ácidos Nucleicos/uso terapêutico
6.
Biomaterials ; 89: 136-47, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26967648

RESUMO

A critical design parameter for the function of synthetic extracellular matrices is to synchronize the gradual cell-mediated degradation of the matrix with the endogenous secretion of natural extracellular matrix (ECM) (e.g., creeping substitution). In hyaluronic acid (HyA)-based hydrogel matrices, we have investigated the effects of peptide crosslinkers with different matrix metalloproteinases (MMP) sensitivities on network degradation and neovascularization in vivo. The HyA hydrogel matrices consisted of cell adhesive peptides, heparin for both the presentation of exogenous and sequestration of endogenously synthesized growth factors, and MMP cleavable peptide linkages (i.e., QPQGLAK, GPLGMHGK, and GPLGLSLGK). Sca1(+)/CD45(-)/CD34(+)/CD44(+) cardiac progenitor cells (CPCs) cultured in the matrices with the slowly degradable QPQGLAK hydrogels supported the highest production of MMP-2, MMP-9, MMP-13, VEGF165, and a range of angiogenesis related proteins. Hydrogels with QPQGLAK crosslinks supported prolonged retention of these proteins via heparin within the matrix, stimulating rapid vascular development, and anastomosis with the host vasculature when implanted in the murine hindlimb.


Assuntos
Materiais Biocompatíveis/metabolismo , Ácido Hialurônico/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Transplante de Células-Tronco , Animais , Materiais Biocompatíveis/química , Adesão Celular , Proliferação de Células , Células Cultivadas , Ácido Hialurônico/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Metaloproteinase 13 da Matriz/química , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Neovascularização Fisiológica , Peptídeos/química , Peptídeos/metabolismo , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Alicerces Teciduais/química
7.
Biomaterials ; 34(8): 2130-41, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23245921

RESUMO

Over the last twenty years there have been several reports on the use of nonviral vectors to facilitate gene transfer in the mammalian brain. Whilst a large emphasis has been placed on vector transfection efficiency, the study of the adverse effects upon the brain, caused by the vectors themselves, remains completely overshadowed. To this end, a study was undertaken to study the tissue response to three commercially available transfection agents in the brain of adult Sprague Dawley rats. The response to these transfection agents was compared to adeno-associated viral vector (AAV), PBS and naked DNA. Furthermore, the use of a collagen hollow sphere (CHS) sustained delivery system was analysed for its ability to reduce striatal toxicity of the most predominantly studied polymer vector, polyethyleneimine (PEI). The size of the gross tissue loss at the injection site was analysed after immunohistochemical staining and was used as an indication of acute toxicity. Polymeric vectors showed similar levels of acute brain toxicity as seen with AAV, and CHS were able to significantly reduce the toxicity of the PEI vector. In addition; the host response to the vectors was measured in terms of reactive astrocytes and microglial cell recruitment. To understand whether this gross tissue loss was caused by the direct toxicity of the vectors themselves an in vitro study on primary astrocytes was conducted. All vectors reduced the viability of the cells which is brought about by direct necrosis and apoptosis. The CHS delivery system reduced cell necrosis in the early stages of post administration. In conclusion, whilst polymeric gene vectors cause acute necrosis, administration in the brain causes adverse effects no worse than that of an AAV vector. Furthermore, packaging the PEI vector with CHS reduces surface charge and direct toxicity without elevating the host response.


Assuntos
Colágeno/farmacologia , Vetores Genéticos/toxicidade , Microesferas , Neurotoxinas/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sistemas Computacionais , Vetores Genéticos/efeitos adversos , Masculino , Polietilenoimina/farmacologia , Ratos , Ratos Sprague-Dawley
8.
Acta Biomater ; 8(12): 4208-14, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22705637

RESUMO

Macrophages are key orchestrators of inflammation as they secrete proteases and inflammatory cytokines. To date, therapies aimed at modulating macrophage phenotype have failed due to the short half-life of biomolecules in the body. Therefore, inhibition of inflammation by gene therapy constitutes a new hope. In the present study, we have assessed collagen hollow spheres as a reservoir system for polyplexes in order to transfect human macrophages while preserving cell viability. Polyplexes were formed by complexing G-Luc plasmid with a poly(2-dimethylaminoethyl methacrylate) poly(ethylene glycol) based hyperbranched polymer. Several ratios of polymer/pDNA (5:1, 8:1, 10:1w/w) complexes in two different sphere sizes (1.24 and 4.5µm) were tested. Collagen hollow spheres were loaded with polyplexes up to 80µg of pDNA per mg of microspheres. The release of polyplexes from the spheres was delayed and prolonged i.e. 20% of the initial amount released in 5days. Following incubation with polyplex-loaded microspheres, macrophages were transfected (polyplex pDNA:polymer ratio 1:10w/w). In addition, collagen hollow spheres maintained cell viability as more than 80% of cells were viable after 4days in culture. In contrast, when used alone, polyplexes were seen to be toxic, while there was no transfection detected. Taken together, these results show that collagen hollow spheres may be used as a reservoir for controlled gene delivery to macrophages. Unlike existing gene delivery systems, this system allows for macrophage transfection with minimal toxicity. Hence, this system has a potential for the delivery of a therapeutic gene in order to modulate inflammation.


Assuntos
Colágeno/química , DNA/química , Macrófagos/metabolismo , Microesferas , Plasmídeos/química , Transfecção/métodos , Linhagem Celular Tumoral , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/terapia , Macrófagos/patologia , Metacrilatos/química , Nylons , Polietilenoglicóis/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA