Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(13): 3813-3825, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35412060

RESUMO

Capillary-channeled polymer fiber (C-CP) solid-phase extraction tips have demonstrated the ability to produce clean and concentrated extracellular vesicle (EV) recoveries from human urine samples in the small EV size range (< 200 nm). An organic modifier-assisted hydrophobic interaction chromatography (HIC) approach is applied in the spin-tip method under non-denaturing conditions-preserving the structure and bioactivity of the recovered vesicles. The C-CP tip method can employ either acetonitrile or glycerol as an elution modifier. The EV recoveries from the C-CP tip method (using both of these solvents) were compared to those obtained using the ultracentrifugation (UC) and polymer precipitation (exoEasy and ExoQuick) EV isolation methods for the same human urine specimen. The biophysical and quantitative characteristics of the recovered EVs using the five isolation methods were assessed based on concentration, size distribution, shape, tetraspanin surface marker protein content, and purity. In comparison to the traditionally used UC method and commercially available polymeric precipitation-based isolation kits, the C-CP tip introduces significant benefits with efficient (< 15 min processing of 12 samples here) and low-cost (< $1 per tip) EV isolations, employing sample volumes (10 µL-1 mL) and concentration (up to 4 × 1012 EVs mL-1) scales relevant for fundamental and clinical analyses. Recoveries of the target vesicles versus matrix proteins were far superior for the tip method versus the other approaches.


Assuntos
Vesículas Extracelulares , Polímeros , Glicerol , Humanos , Extração em Fase Sólida , Solventes
2.
Analyst ; 146(13): 4314-4325, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34105528

RESUMO

Extracellular vesicles (EVs) play essential roles in biological systems based on their ability to carry genetic and protein cargos, intercede in cellular communication and serve as vectors in intercellular transport. As such, EVs are species of increasing focus from the points of view of fundamental biochemistry, clinical diagnostics, and therapeutics delivery. Of particular interest are 30-200 nm EVs called exosomes, which have demonstrated high potential for use in diagnostic and targeted delivery applications. The ability to collect exosomes from patient biofluid samples would allow for comprehensive yet remote diagnoses to be performed. While several exosome isolation methods are in common use, they generally produce low recoveries, whose purities are compromised by concomitant inclusion of lipoproteins, host cell proteins, and protein aggregates. Those methods often work on lengthy timescales (multiple hours) and result in very low throughput. In this study, capillary-channeled polymer (C-CP) fiber micropipette tips were employed in a hydrophobic interaction chromatography (HIC) solid-phase extraction (SPE) workflow. Demonstrated is the isolation of exosomes from human urine, saliva, cervical mucus, serum, and goat milk matrices. This method allows for quick (<15 min) and low-cost (<$1 per tip) isolations at sample volume and time scales relevant for clinical applications. The tip isolation was evaluated using absorbance (scattering) detection, nanoparticle tracking analysis (NTA), and transmission electron microscopy (TEM). Exosome purity was assessed by Bradford assay, based on the removal of free proteins. An enzyme-linked immunosorbent assay (ELISA) to the CD81 tetraspanin protein was used to confirm the presence of the known exosomal-biomarker on the vesicles.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Extração em Fase Sólida
3.
Anal Bioanal Chem ; 413(11): 2985-2994, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33608753

RESUMO

Lentiviruses are increasingly used as gene delivery vehicles for vaccines and immunotherapies. However, the purification of clinical-grade lentivirus vectors for therapeutic use is still troublesome and limits preclinical and clinical experiments. Current purification methods such as ultracentrifugation and ultrafiltration are time consuming and do not remove all of the impurities such as cellular debris, membrane fragments, and denatured proteins from the lentiviruses. The same challenges exist in terms of their analytical characterization. Presented here is the novel demonstration of the chromatographic isolation of virus particles from culture media based on the hydrophobicity characteristics of the vesicles. A method was developed to isolate lentivirus from media using a hydrophobic interaction chromatography (HIC) method performed on a polyester, capillary-channeled polymer (PET C-CP) stationary phase and a standard liquid chromatography apparatus. The method is an extension of the approach developed in this laboratory for the isolation of extracellular vesicles (EVs). Quantitative polymerase chain reaction (qPCR) was used to verify and quantify lentiviruses in elution fractions. Load and elution mobile phase compositions were optimized to affect high efficiency and throughput. The process has been visualized via scanning electron microscopy (SEM) of the fiber surfaces following media injection, the elution of proteinaceous material, and the elution of lentiviruses. This effort has yielded a rapid (<10 min), low-cost (< $15 per column, providing multiple separations), and efficient method for the isolation/purification of lentivirus particles from cell culture media at the analytical scale.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Lentivirus/isolamento & purificação , Poliésteres/química , Polímeros/química , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Reação em Cadeia da Polimerase em Tempo Real , Espectrofotometria Ultravioleta
4.
Anal Bioanal Chem ; 412(19): 4713-4724, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32468278

RESUMO

Exosomes, a subset of the extracellular vesicle (EV) group of organelles, hold great potential for biomarker detection, therapeutics, disease diagnosis, and personalized medicine applications. The promise and potential of these applications are hindered by the lack of an efficient means of isolation, characterization, and quantitation. Current methods for exosome and EV isolation (including ultracentrifugation, microfiltration, and affinity-based techniques) result in impure recoveries with regard to remnant matrix species (e.g., proteins, genetic material) and are performed on clinically irrelevant time and volume scales. To address these issues, a polyethylene terephthalate (PET) capillary-channeled polymer (C-CP) fiber stationary phase is employed for the solid-phase extraction (SPE) of EVs from various matrices using a micropipette tip-based format. The hydrophobic interaction chromatography (HIC) processing and a spin-down workflow are carried out using a table-top centrifuge. Capture and subsequent elution of intact, biologically active exosomes are verified via electron microscopy and bioassays. The performance of this method was evaluated by capture and elution of exosome standards from buffer solution and three biologically relevant matrices: mock urine, reconstituted non-fat milk, and exosome-depleted fetal bovine serum (FBS). Recoveries were evaluated using UV-Vis absorbance spectrophotometry and ELISA assay. The dynamic binding capacity (50%) for the 1-cm-long (~ 5 µL bed volume) tips was determined using a commercial exosome product, yielding a value of ~ 7 × 1011 particles. The novel C-CP fiber spin-down tip approach holds promise for the isolation of exosomes and other EVs from various matrices with high throughput, low cost, and high efficiency. Graphical abstract.


Assuntos
Exossomos/química , Poliésteres/química , Extração em Fase Sólida/métodos , Animais , Bovinos , Desenho de Equipamento , Humanos , Leite/química , Polietilenotereftalatos/química , Soro/química , Extração em Fase Sólida/instrumentação , Urina/química
5.
Electrophoresis ; 40(4): 571-581, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548636

RESUMO

Extracellular vesicles, including microvesicles and exosomes, are lipidic membrane-derived vesicles that are secreted by most cell types. Exosomes, one class of these vesicles that are 30-100 nm in diameter, hold a great deal of promise in disease diagnostics, as they display the same protein biomarkers as their originating cell. For exosomes to become useful in disease diagnostics, and as burgeoning drug delivery platforms, they must be isolated efficiently and effectively without compromising their structure. Most current exosome isolation methods have practical problems including being too time-consuming and labor intensive, destructive to the exosomes, or too costly for use in clinical settings. To this end, this study examines the use of poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate exosomes from diverse matrices of practical concern. Initial results demonstrate the ability to isolate extracellular vesicles enriched in exosomes with comparable yields and size distributions on a much faster time scale when compared to traditional isolation methods. As a demonstration of the potential analytical utility of the approach, extracellular vesicle recoveries from cell culture milieu and a mock urine matrix are presented. The potential for scalable separations covering submilliliter spin-down columns to the preparative scale is anticipated.


Assuntos
Cromatografia Líquida/métodos , Exossomos , Poliésteres/química , Dictyostelium/citologia , Desenho de Equipamento , Humanos , Interações Hidrofóbicas e Hidrofílicas , Urina/citologia
6.
Anal Bioanal Chem ; 411(25): 6591-6601, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31372698

RESUMO

Exosomes are vesicles secreted by cells having a size range from 30 to 150 nm and carrying genetic materials that are important for intercellular functions, including cancer progression. Mounting evidence shows that tumor cells secrete more exosomes than normal cells. Thus, it is important to be able to efficiently isolate and quantify exosomes for potential use in clinical diagnostics, as well as to develop a deeper understanding of their role in intercellular processes. Current methods for exosome isolation and quantification are time-consuming and expensive. Few of these methods are able to combine exosome isolation and quantification into a singular operation scheme. However, a new efficient, rapid, and low-cost isolation and quantification method for exosomes in human urine samples using polyester (PET) capillary-channeled polymer (C-CP) fibers in a hydrophobic interaction chromatography (HIC) protocol has been developed. The process has been verified via scanning electron microscopy (SEM) before and after the capture of exosomes on the fiber surfaces. Sample load and elution rates were optimized to affect high resolution and throughput. Isolated exosomes were quantified based on a UV absorbance response curve created using a commercial human urine-derived exosome standard with an exosome concentration of 7.32 × 1011 mL-1. The loading capacity of a 30-cm C-CP PET column was ~ 7 × 1011 exosomes. An inter-injection washing method with PBS was developed to improve the reproducibility with a 2.9% RSD achieved for 7 complete isolation cycles. Graphical abstract.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Exossomos/química , Poliésteres/química , Urina/química , Desenho de Equipamento , Humanos , Interações Hidrofóbicas e Hidrofílicas , Urinálise/instrumentação
7.
Langmuir ; 31(38): 10418-25, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26381380

RESUMO

Headgroup-functionalized lipids are being developed as ligand tethers for high selectivity separations on polypropylene capillary-channeled polymer fiber stationary phases. Surface modification is affected under ambient conditions from aqueous solution. This basic methodology has promise in many areas where robust modifications are desired on hydrophobic surfaces. In order to understand the mode of adsorption of the lipid tail to the polypropylene surface, lipids labeled with the environmentally sensitive 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD) fluorophore were used, with NBD covalently attached to the headgroup (NBD-PE) or the acyl chain (acyl NBD-PE) of the lipid. When modified with the acyl NBD-PE, fluorescence imaging of the fiber at excitation wavelengths increasing from 470 to 510 nm caused a 32 nm shift in emission toward the red edge of the absorption band, indicating that the NBD molecule (and thus the lipid tail) is motionally restricted. Fluorescence imaging on fibers modified with NBD-PE or the free NBD-Cl dye molecule yields no change in the emission response. The results of these imaging studies provide evidence that the acyl chain portions of the lipids intercalate into free volume of the polypropylene fiber structure, yielding a robust means of surface modification and the potential for high ligand densities.


Assuntos
Lipídeos/química , Polipropilenos/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Anal Chim Acta ; 1167: 338578, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34049630

RESUMO

Exosomes are membrane-bound, cell-secreted vesicles, with sizes ranging from 30 to 150 nm. Exosomes in blood plasma have become proposed targets as measurable indicators of disease conditions. Current methods for plasma-based exosome isolation are time-consuming, complex, and have high operational costs. One of the most commonly reported shortcomings of current isolation protocols is the co-extraction of lipoproteins (e.g. low-density lipoproteins, LDLs) with the target exosomes. This report describes the use of a rapid, single-operation hydrophobic interaction chromatography (HIC) procedure on a polyester (PET) capillary-channeled polymer (C-CP) fiber column, demonstrating the ability to efficiently purify exosomes. The method has previously been demonstrated for isolation of exosomes from diverse biological matrices, but questions were raised about the potential co-elution of LDLs. In the method described herein, a step-gradient procedure sequentially elutes spiked lipoproteins and blood plasma-originating exosomes in 10 min, with the LDLs excluded from the desired exosome fraction. Mass spectrometry (MS) was used to characterize an impurity in the primary LDL material, identifying the presence of exosomal material. Transmission electron microscopy (TEM) and an enzyme-linked immunosorbent assay (ELISA) were used to identify the various elution components. The method serves both as a rapid means of high purity exosome isolation as well as a screening tool for the purity of LDL samples with respect to extracellular vesicles.


Assuntos
Exossomos , Cromatografia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipoproteínas LDL , Plasma , Poliésteres , Polímeros
9.
Biotechnol Prog ; 36(5): e2998, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32246744

RESUMO

Exosomes are membrane-secreted vesicles, with sizes ranging from 30 to 150 nm, which play key roles in intercellular communication. There is intense interest in developing methods to isolate and quantify exosomes toward clinical diagnostics, fundamental studies of intercellular processes, and use of exosomes as delivery vehicles for therapeutic agents. Current methods for exosomes isolation and quantification are time consuming and have operational high costs; few combine isolation and quantification into a singular operation unit. This report describes the use of hydrophobic interaction chromatography on a polyester capillary-channeled polymer fiber column, employing a step gradient for exosome elution, including use of glycerol as a solvent modifier. The entire procedure is completed in 8 min, while maintaining the structural integrity and biological activity of the isolated exosomes. Electron microscopy was used to verify the size and structural fidelity of single exosomes. Absorbance response curves for a commercial exosome sample were used for exosome quantification in the chromatographic separations. In order to determine the dynamic loading capacity for exosomes, different volumes of Dictyostelium discoideum cell culture milieu supernatant were loaded at different column lengths (5-30 cm) and loading flow rates (0.2-0.5 ml/min). A loading capacity of 5.4 × 1012 exosomes derived from D. discoideum milieu was obtained on a 0.8 × 300 mm column; yielding recoveries of over 80%. It is believed that this isolation and purification strategy holds many advantages toward the use of exosomes across a wide breadth of medical and biotechnology applications.


Assuntos
Cromatografia Líquida/métodos , Exossomos , Glicerol/química , Polímeros/química , Dictyostelium/citologia , Exossomos/química , Exossomos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Poliésteres
10.
Anal Chim Acta ; 1082: 186-193, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472708

RESUMO

Exosomes are one class of extracellular vesicles (30-150 nm diameter) that are secreted by cells. These small vesicles hold a great deal of promise in disease diagnostics, as they display the same protein biomarkers as their originating cell. On a cellular level, exosomes are attributed to playing a key role in intercellular communication, and may eventually be exploited for targeted drug delivery. In order for exosomes to become useful in disease diagnostics, and as burgeoning drug delivery platforms, they must be isolated efficiently and effectively without compromising their structure. Plasma from peripheral blood is an excellent source of exosomes, as it is easily collected and the process does not normally cause undue discomfort to the patient. Unfortunately, blood plasma content is complex, containing abundant amounts of soluble proteins and aggregates, making exosomes extremely difficult to isolate in high purity from plasma. Most current exosome isolation methods have practical challenges including being too time-consuming and labor intensive, destructive to the exosomes, or too costly for use in clinical settings. To this end, this study examines the use of poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers in a hydrophobic interaction chromatography (HIC) protocol to isolate exosomes from a human plasma sample. Initial results demonstrate the ability to isolate exosomes with comparable yields and size distributions and on a much faster time scale when compared to traditional isolation methods, while also alleviating concomitant proteins and other impurities. As a demonstration of the potential quantitative utility of the approach, a linear response (particles injected on-column vs peak area) using a commercial exosome standard was established using a standard UV absorbance detector. Based on the calibration function, the concentration of the original human plasma sample was determined and subsequently confirmed by NTA measurement. The potential for scalable separations covering sub-milliliter spin-down solid phase extraction tips to the preparative scale is anticipated.


Assuntos
Células Sanguíneas , Exossomos , Cromatografia/instrumentação , Cromatografia/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Polietilenotereftalatos/química
11.
Environ Toxicol Chem ; 34(11): 2564-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26042578

RESUMO

Limited information is available on the presence of microplastics in freshwater systems, and even less is known about the toxicological implications of the exposure of aquatic organisms to plastic particles. The present study was conducted to evaluate the effects of microplastic ingestion on the freshwater amphipod, Hyalella azteca. Hyalella azteca was exposed to fluorescent polyethylene microplastic particles and polypropylene microplastic fibers in individual 250-mL chambers to determine 10-d mortality. In acute bioassays, polypropylene microplastic fibers were significantly more toxic than polyethylene microplastic particles; 10-d lethal concentration 50% values for polyethylene microplastic particles and polypropylene microplastic fibers were 4.64 × 10(4) microplastics/mL and 71.43 microplastics/mL, respectively. A 42-d chronic bioassay using polyethylene microplastic particles was conducted to quantify effects on reproduction, growth, and egestion. Chronic exposure to polyethylene microplastic particles significantly decreased growth and reproduction at the low and intermediate exposure concentrations. During acute exposures to polyethylene microplastic particles, the egestion times did not significantly differ from the egestion of normal food materials in the control; egestion times for polypropylene microplastic fibers were significantly slower than the egestion of food materials in the control. Amphipods exposed to polypropylene microplastic fibers also had significantly less growth. The greater toxicity of microplastic fibers than microplastic particles corresponded with longer residence times for the fibers in the gut. The difference in residence time might have affected the ability to process food, resulting in an energetic effect reflected in sublethal endpoints.


Assuntos
Anfípodes/fisiologia , Plásticos/toxicidade , Reprodução/efeitos dos fármacos , Anfípodes/efeitos dos fármacos , Animais , Plásticos/química , Plásticos/metabolismo , Polipropilenos/química , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA