Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29330179

RESUMO

Biofilm formation on abiotic surfaces in the food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine the cellular architecture of early biofilms and the bacterial behavior of the constituent cells remains largely unknown. In this study, we examined the specific role of type I fimbriae in nascent stages of biofilm formation and the response of microcolonies to environmental flow shear at the single-cell resolution. The results show that type I fimbriae are not required for reversible adhesion from plankton, but they are critical for the irreversible adhesion of Escherichia coli strain MG1655 cells that form biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing firm cell surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E. coli on the surface. After the application of shear stress, bacterial retention is dominated by the three-dimensional architecture of colonies, independent of the population size, and the multilayered structure could protect the embedded cells from being insulted by fluid shear, while the cell membrane permeability mainly depends on the biofilm population size and the duration of the shear stress.IMPORTANCE Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level; thus, little is known about how individual bacterium behavior within biofilms and the multicellular architecture are influenced by bacterial appendages (e.g., pili/fimbriae) and environmental factors during early biofilm formation. We applied confocal laser scanning microscopy (CLSM) to visualize Escherichia coli microcolonies at a single-cell resolution. Our findings suggest that type I fimbriae are vital to the initiation of bacterial proliferation on surfaces. We also found that the fluid shear stress affects the biofilm architecture and cell membrane permeability of the constituent bacteria in a different way: the onset of the biofilm is linked with the three-dimensional morphology, while membranes are regulated by the overall population of microcolonies.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Fímbrias Bacterianas/metabolismo , Estresse Fisiológico , Aderência Bacteriana , Equipamentos e Provisões/microbiologia , Escherichia coli/crescimento & desenvolvimento , Microscopia Confocal , Polietilenotereftalatos/química , Propriedades de Superfície
2.
J Biol Chem ; 288(51): 36215-25, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24178299

RESUMO

As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The "clamshell-like" motions of its ß-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the "molecular switch" in endotoxic signaling.


Assuntos
Lipopolissacarídeos/química , Simulação de Dinâmica Molecular , Receptor 4 Toll-Like/química , Regulação Alostérica , Sítio Alostérico , Humanos , Lipídeos/química , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor 4 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA