Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Anal Chem ; 96(25): 10467-10475, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38863336

RESUMO

"Signal-off" nanozyme sensing platforms are usually employed to detect analytes (e.g., ascorbic acid (AA) and alkaline phosphatase (ALP)), which are mostly based on oxidase (OXD) nanozymes. However, their drawbacks, like dissolved oxygen-dependent catalysis capability, relatively low enzyme activity, limited amount, and kind, may not favor sensing platforms' optimization. Meanwhile, with the need for sustainable development, a reusable "signal-off" sensing platform is essential for cutting down the cost of the assay, but it is rarely developed in previous studies. Magnetic peroxidase (POD) nanozymes potentially make up the deficiencies and become reusable and better "signal-off" sensing platforms. As a proof of concept, we first construct Fe3O4@polydopamine-supported Pt/Ru alloy nanoparticles (IOP@Pt/Ru) without stabilizers. IOP@Pt/Ru shows high POD activity with Vmax of 83.24 × 10-8 M·s-1 for 3,3',5,5'-Tetramethylbenzidine (TMB) oxidation. Meanwhile, its oxidation rate for TMB is slower than the reduction of oxidized TMB by reducers, favorable for a more significant detection signal. On the other hand, IOP@Pt/Ru possesses great magnet-responsive capability, making itself be recycled and reused for at least 15-round catalysis. When applying IOP@Pt/Ru for AA (ALP) detection, it performs better detectable adaptability, with a linear range of 0.01-0.2 mM (0.1-100 U/L) and a limit of detection of 0.01 mM (0.05 U/L), superior to most of OXD nanozyme-based ALP sensing platform. Finally, IOP@Pt/Ru's reusable assay was demonstrated in real blood samples for ALP assay, which has never been explored in previous studies. Overall, this study develops a reusable "signal-off" nanozyme sensing platform with superior assay capabilities than traditional OXD nanozymes, paves a new way to optimize nanozyme-based "signal-off" sensing platforms, and provides an idea for constructing inexpensive and sustainable sensing platforms.


Assuntos
Ligas , Peroxidase , Platina , Platina/química , Ligas/química , Peroxidase/química , Peroxidase/metabolismo , Benzidinas/química , Limite de Detecção , Oxirredução , Polímeros/química , Humanos , Catálise , Técnicas Biossensoriais/métodos , Ácido Ascórbico/análise , Ácido Ascórbico/química , Indóis
2.
ACS Nano ; 18(32): 21411-21432, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39079092

RESUMO

Epidural adhesion or epidural fibrosis is the major reason for postoperative pain, which remains a clinically challenging problem. Current physical barriers fail to provide a satisfactory therapeutic outcome mainly due to their lack of adhesion, inability to prevent fluid leakage, and exhibiting limited antioxidant properties. Herein, we fabricated a cysteine-modified bioadhesive (SECAgel) with improved sealing and antioxidant properties for epidural adhesion prevention, inspired by the organism's antioxidant systems. The resulting SECAgel showed good injectability and in situ adhesion ability, effectively covering every corner of the irregular wound. Besides, it possessed efficient sealing properties (395.2 mmHg), effectively stopping blood leakage in the rabbit carotid artery transection model. The antioxidant experiments demonstrated that the SECAgel effectively scavenged various radicals and saved the cells from oxidative stress. Two animal models were used to show that the SECAgel effectively inhibited adhesion in both situations with and without cerebrospinal fluid leakage. The RNA sequencing analysis showed that SECAgel treatment effectively inhibited the expression of key genes related to adhesion development, inflammatory response, and oxidative stress. The SECAgel, together with good biocompatibility, can be a good candidate for preventing epidural adhesion in the clinic.


Assuntos
Antioxidantes , Animais , Coelhos , Antioxidantes/farmacologia , Antioxidantes/química , Aderências Teciduais/prevenção & controle , Espaço Epidural/patologia , Espaço Epidural/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Cisteína/química , Cisteína/farmacologia , Humanos , Camundongos , Adesivos/química , Adesivos/farmacologia , Masculino
3.
Adv Healthc Mater ; 12(5): e2202122, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399015

RESUMO

Shape memory sponges are very promising in stopping the bleeding from noncompressible and narrow entrance wounds. However, few shape memory sponges have fast degradable properties in order to not hinder tissue healing. In this work, based on cryopolymerization, a succinic ester-based sponge (Ssponge) is fabricated using gelatin and bi-polyethylene glycol-succinimidyl succinate (Bi-PEG-SS). Compared with the commercially available gelatin sponge (Csponge), Ssponge possesses better water/blood absorption ability and higher mechanical pressure over the surrounding tissues. Moreover, in the models of massive liver hemorrhage after transection and noncompressive liver wounds by penetration, Ssponge exhibits a better hemostasis performance than Csponge. Furthermore, in a liver regeneration model, Ssponge-treated livers shows higher regeneration speed compared with Csponge, including a lower injury score, more cavity-like tissues, less fibrosis and enhanced tissue regeneration. Overall, it is shown that Ssponge, with a fast degradation behavior, is not only highly efficient in stopping bleeding but also not detrimental for tissue healing, possessing promising clinical translational potential.


Assuntos
Gelatina , Hemostáticos , Humanos , Gelatina/farmacologia , Hemorragia/terapia , Hemostasia , Cicatrização , Polietilenoglicóis/farmacologia , Hemostáticos/farmacologia
4.
ACS Appl Mater Interfaces ; 14(1): 373-382, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978423

RESUMO

Postoperative adhesion not only causes severe complications for patients but also increases their economic burden. Injectable bioadhesives with adhesiveness to tissues can cover irregular wounds and stay stable in situ, which is a promising barrier for antiadhesion. However, the potential tissue adhesion caused by bioadhesives' indiscriminate adhesiveness between normal and wounded tissue is still a problem. Herein, by using poly(ethylene glycol) succinimidyl succinate (PEG-SS) and gelatin, a succinyl ester-based bioadhesive (SEgel) was fabricated with self-deactivating properties for postoperative antiadhesion. Because N-hydroxysuccinimide esters (NHS-esters) were used as the adhesive group, the bioadhesives' side in contact with the tissue built covalent anchors quickly to maintain the stability, but the superficial layer facing outward withstood fast hydrolysis and then lost its adhesion within minutes, avoiding the indiscriminate adhesiveness. In addition, because of the specific degradation behavior of succinyl ester, the SEgel with proper in vivo retention was achieved without the worry of causing foreign body reactions and unexpected tissue adhesion. Both the cecum-sidewall adhesion and hepatic adhesion models showed that the SEgel markedly reduced the severity of tissue adhesion. These results, together with the ease of the preparation process and well-proven biocompatibility of raw materials, revealed that the SEgel might be a promising solution for postoperative antiadhesion.


Assuntos
Materiais Biocompatíveis/farmacologia , Ésteres/farmacologia , Polietilenoglicóis/farmacologia , Succinimidas/farmacologia , Aderências Teciduais/tratamento farmacológico , Adesivos Teciduais/farmacologia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Ésteres/administração & dosagem , Ésteres/química , Teste de Materiais , Camundongos , Estrutura Molecular , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Succinimidas/administração & dosagem , Succinimidas/química , Adesivos Teciduais/administração & dosagem , Adesivos Teciduais/química
5.
ACS Appl Mater Interfaces ; 12(8): 9132-9140, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32058692

RESUMO

Designing versatile functional medical adhesives with injectability, self-healing, and strong adhesion is of great significance to achieve desirable therapeutic effects for promoting wound sealing in healthcare. Herein, a self-healing injectable adhesive is fabricated by physical interaction of polyphenol compound tannic acid (TA) and eight-arm poly(ethylene glycol) end-capped with succinimide glutarate active ester (PEG-SG). The hydrogen bonding induced from the structural unit (-CH2-CH2-O-) of PEG and catechol hydroxyl (-OH) of TA, accompanied by ester exchange between N-hydroxysuccinimide (-NHS) and amino (-NH2) of proteins, contributes to self-healing ability and rapid strong adhesion. Notably, the PEG/TA adhesive can repeatedly adhere to rigid porcine tissues, close the coronary artery under a large incision tension, and bear a heavy load of 2 kg. By exhibiting shear-thinning and anti-swelling properties, the PEG/TA adhesive can be easily applied through single-syringe extrusion onto various wounds. The single-channel toothpaste-like feature of the adhesive ensures its storage hermetically for portable usage. Moreover, in vivo operation and histological H&E staining results indicate that the PEG/TA adhesive greatly accelerates wound healing and tissue regeneration in a rat model. With the specialty of injectability, instant self-healing, and long-lasting strong adhesion to facilitate excellent therapeutic effects, the multifunctional PEG/TA adhesive may provide a new alternative for self-rescue and surgical situations.


Assuntos
Adesivos Teciduais , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Animais , Feminino , Hidrogéis/química , Hidrogéis/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Succinimidas/química , Succinimidas/farmacologia , Taninos/química , Taninos/farmacologia , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
6.
Int J Biol Macromol ; 164: 1384-1391, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721461

RESUMO

Bioadhesives have a potential to modulate the wound closure process with significant biological outcomes. However, none of the currently commercialized adhesives are satisfactory in their performance. It is a challenging task to develop an adhesive system that can work on wet surface and enhances tissue repair and closure. In this study, we have fabricated a series of gelatin-dopamine (Gel-dop) conjugates and studied their adhesive properties after being chemically crosslinked using sodium periodate. The designed material was assessed for its adhesive properties including tensile, lap shear and peeling study by varying the degree of dopamine substitution. It was observed that the adhesive property has a direct correlation with increase in dopamine content until reaching a maximum and then a subsequent decrease. We tested the adhesive strength of the different formulations by varying the degree of substitution and compared against fibrin glue, which is considered as the gold standard of adhesives. The formulation with a moderate substitution degree demonstrated the optimal adhesive property than those formulations with lower and larger substitution degree. Further, the in vitro cytotoxicity study showed that this tunable Gel-dop adhesives are to non-cytotoxic, indicating a potential use in clinic applications. This study illustrates that adhesiveness can be regulated by changing the degree of dopamine substitution.


Assuntos
Dopamina/química , Gelatina/química , Propriedades de Superfície , Adesivos Teciduais/química , Adesividade , Animais , Benzoquinonas/química , Catecóis/química , Adesão Celular , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Adesivo Tecidual de Fibrina/química , Hidrogéis/química , Teste de Materiais , Oxigênio/química , Ácido Periódico/química , Pressão , Reologia , Resistência ao Cisalhamento , Pele/efeitos dos fármacos , Suínos , Resistência à Tração
7.
Adv Healthc Mater ; 9(13): e2000268, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32431051

RESUMO

At present, reconnecting the transected nerve in clinic is still mainly reliant on surgery suture. This is a procedure that requires thorough training and is also time consuming. Here, an octa-poly(ethylene glycol) (PEG)-based adhesive for fast reconnecting of the transected peripheral nerve is reported. To enhance the therapeutic efficacy, a succinyl unit is applied to endow the controllably dissolvable property of the adhesive, and lithium is loaded in the adhesive to improve the axonal regeneration. Present data reveal that this adhesive possesses good cytocompatibility and can significantly shorten the reconnecting time of the transected nerve ends compared to that required for suture surgery. Histology, electrophysiological, and behavior assessments indicate that the adhesive reconnected nerves exhibit a low grade of fibrosis, inflammation response, and myoatrophy as well as robust axonal regeneration and functional recovery. Together, these results indicate that this octa-PEG adhesive can act as an alternative to traditional nerve suture in peripheral nerve injury.


Assuntos
Lítio , Regeneração Nervosa , Adesivos , Axônios , Nervos Periféricos , Polietilenoglicóis , Nervo Isquiático
8.
Adv Mater ; 31(28): e1901580, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31106912

RESUMO

Medical sealant devices for in vivo hemostasis are far from satisfactory in the aged society. A major challenge is effective integration of quick hemorrhage control of the increased anticoagulated patients, high safety, and facile accessibility. Here, a well-defined ammonolysis-based Tetra-PEG hydrogel sealant is developed with rapid gelation speed, strong tissue adhesion, and high mechanical strength. Introduction of cyclized succinyl ester groups into a hydrogel matrix endows the sealant with fast degradable and controllably dissolvable properties. The hydrogel possesses outstanding hemostatic capabilities even under the anticoagulated conditions while displaying excellent biocompatibility and feasibility. These results reveal that the optimized hydrogel may be a facile, effective, and safe sealant for hemorrhage control in vivo.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Hemostasia/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Polietilenoglicóis/química , Vísceras/efeitos dos fármacos , Aminas/química , Animais , Camundongos , Ratos , Vísceras/fisiologia
9.
ACS Appl Mater Interfaces ; 9(3): 2205-2212, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28029238

RESUMO

Hydrogels are required to have high mechanical properties, biocompatibility, and an easy fabrication process for biomedical applications. Double-network hydrogels, although strong, are limited because of the complicated preparation steps and toxic materials involved. In this study, we report a simple method to prepare tough, in situ forming polyethylene glycol (PEG)-agarose double-network (PEG-agarose DN) hydrogels with good biocompatibility. The hydrogels display excellent mechanical strength. Because of the easily in situ forming method, the resulting hydrogels can be molded into any form as needed. In vitro and in vivo experiments illustrate that the hydrogels exhibit satisfactory biocompatibility, and cells can attach and spread on the hydrogels. Furthermore, the residual amino groups in the network can also be functionalized for various biomedical applications in tissue engineering and cell research.


Assuntos
Hidrogéis/química , Materiais Biocompatíveis , Polietilenoglicóis , Sefarose , Engenharia Tecidual
10.
ACS Appl Mater Interfaces ; 8(20): 12674-83, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27159886

RESUMO

Immediate hemorrhage control and infection prevention are pivotal for saving lives in critical situations such as battlefields, natural disasters, traffic accidents, and so on. In situ hydrogels are promising candidates, but their mechanical strength is often not strong enough for use in critical situations. In this study, we constructed three hydrogels with different amounts of Schiff-base moieties from 4-arm-PEG-NH2, 4-arm-PEG-NHS, and 4-arm-PEG-CHO in which vancomycin was incorporated as an antimicrobial agent. The hydrogels possess porous structures, excellent mechanical strength, and high swelling ratio. The cytotoxicity studies indicated that the composite hydrogel systems possess good biocompatibility. The Schiff bases incorporated improve the adhesiveness and endow the hydrogels with bacteria-sensitivity. The in vivo hemostatic and antimicrobial experiments on rabbits and pigs demonstrated that the hydrogels are able to aid in rapid hemorrhage control and infection prevention. In summary, vancomycin-loaded hydrogels may be excellent candidates as hemostatic and antibacterial materials for first aid treatment of the wounded in critical situations.


Assuntos
Bactérias/efeitos dos fármacos , Hemostáticos/síntese química , Hemostáticos/farmacologia , Hidrogéis/síntese química , Hidrogéis/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Tratamento de Emergência , Hemostáticos/química , Hidrogéis/química , Polietilenoglicóis , Coelhos , Bases de Schiff/química , Suínos , Vancomicina/química , Vancomicina/farmacologia
11.
J Agric Food Chem ; 59(23): 12652-7, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22007884

RESUMO

Daidzein, an isoflavonoid with known prooxidative effects in heterogeneous lipid/water systems, changes to an antioxidant for 7-n-alkoxy derivatives of daidzein. For an alkyl length increasing from 4 to 8, 12, and 16 carbons, the oxidation potential decreases gradually from 1.09 V (vs NHE) for daidzein (D) to 0.94 V for D16 in tetrahydrofuran as determined by cyclic voltammetry at 25 °C. The prooxidative effects transform into antioxidative effects from D8 with a maximal effect for D12 for aqueous phase initiation of lipid oxidation in liposomes despite a gradual decrease in Trolox equivalent antioxidant capacity (TEAC) with increasing alkyl chain length. Quantum mechanical calculations using density functional theory (DFT) showed that the bond dissociation energy of the O-H bond of the 4'-phenol is constant along the homologue series in contrast to Δµ, the change in dipole moment upon hydrogen atom donation, which increases for increasing chain length. The frontier orbital energy gap goes through a maximum for D12. The change in the A-to-B dihedral angle upon hydrogen atom donation further shows a maximum for D12 of 6.45°. The importance of these microscopic properties for antioxidative activity was confirmed by a change in liposome fluorescence anisotropy using a fluorescent probe showing maximal penetration into the lipid bilayer for D12 along the homologue series.


Assuntos
Antioxidantes/química , Isoflavonas/química , Antioxidantes/síntese química , Peroxidação de Lipídeos , Lipossomos/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Oxidantes/química , Relação Quantitativa Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA