Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 92(16): 11080-11088, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32519547

RESUMO

A new tissue sample embedding and processing method is presented that provides downstream compatibility with numerous different histological, molecular biology, and analytical techniques. The methodology is based on the low temperature embedding of fresh frozen specimens into a hydrogel matrix composed of hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) and sectioning using a cryomicrotome. The hydrogel was expected not to interfere with standard tissue characterization methods, histologically or analytically. We assessed the compatibility of this protocol with various mass spectrometric imaging methods including matrix-assisted laser desorption ionization (MALDI), desorption electrospray ionization (DESI) and secondary ion mass spectrometry (SIMS). We also demonstrated the suitability of the universal protocol for extraction based molecular biology techniques such as rt-PCR. The integration of multiple analytical modalities through this universal sample preparation protocol offers the ability to study tissues at a systems biology level and directly linking results to tissue morphology and cellular phenotype.


Assuntos
Hidrogéis/química , Derivados da Hipromelose/química , Povidona/química , Manejo de Espécimes/métodos , Inclusão do Tecido/métodos , Animais , Masculino , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
J Microbiol Methods ; 79(3): 329-35, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19835915

RESUMO

Bacterial colonies are spatially complex structures whose physiology is profoundly dependent on interactions between cells and with the underlying semi-solid substratum. Here, we use bacterial colonies as a model of a microbial community to evaluate the potential of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to delineate elemental distributions within colonies with minimal pre-treatment. To reduce water content of the colony and limit undesirable absorption of laser energy, we compared methods of preparing 24h-old colonies of Escherichia coli TG1 on agar for laser ablation. Colonies on excised agar segments dried on chromatography paper were superior to colonies dried in a dessicator or by prolonged incubation, with respect to signal magnitude, signal:noise ratio and background signal. Having optimised laser scan speed (10 microm s(-1)) and laser beam diameter (100 microm), further improvements were achieved by growing colonies on nylon membranes over agar, which were then transferred to the ablation chamber without further treatment. Repeated line rasters across individual membrane-supported colonies yielded three-dimensional elemental maps of colonies, revealing a convex morphology consistent with visual inspection. By normalising isotope counts for P, Mn, Zn, Fe and Ca against Mg, the most abundant cellular divalent cation, we sought elemental heterogeneity within the colony. The normalised concentration of Mn in the perimeter was higher than in the colony interior, whereas the converse was true for Ca. LA-ICP-MS is a novel and powerful method for probing elemental composition and organisation within microbial communities and should find numerous applications in, for example, biofilm studies.


Assuntos
Bactérias/química , Fenômenos Fisiológicos Bacterianos , Biofilmes , Espectrometria de Massas/métodos , Modelos Biológicos , Escherichia coli/crescimento & desenvolvimento , Lasers , Membranas Artificiais , Filtros Microporos , Nylons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA