Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Small ; 18(52): e2205461, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36366920

RESUMO

Metallodrugs are widely used in cancer treatment. The modification of metallodrugs with polyethylene glycol (PEGylation) prolongs blood circulation and improves drug accumulation in tumors; it represents a general strategy for drug delivery. However, PEGylation hinders cellular internalization and tumor penetration, which reduce therapeutic efficacy. Herein, the red-light-enhanced cellular internalization and tumor penetration of a PEGylated anticancer agent, PEGylated Ru complex (Ru-PEG), are reported upon. Ru-PEG contains a red-light-cleavable PEG ligand, anticancer Ru complex moiety, and fluorescent pyrene group for imaging and self-assembly. Ru-PEG self-assembles into vesicles that circulate in the bloodstream and accumulate in the tumors. Red-light irradiation induces dePEGylation and changes the Ru-PEG vesicles to large compound micelles with smaller diameters and higher zeta potentials, which enhance tumor penetration and cellular internalization. Red-light irradiation also generates intracellular 1 O2 , which induces the death of cancer cells. This work presents a new strategy to enhance the cellular internalization and tumor penetration of anticancer agents for efficient phototherapy.


Assuntos
Antineoplásicos , Fototerapia , Fototerapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Luz , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Polietilenoglicóis , Linhagem Celular Tumoral
2.
Small ; 18(27): e2201672, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35665442

RESUMO

It is challenging to treat multidrug-resistant tumors because such tumors are resistant to a broad spectrum of structurally and functionally unrelated drugs. Herein, treatment of multidrug-resistant tumors using red-light-responsive metallopolymer nanocarriers that are conjugated with the anticancer drug chlorambucil (CHL) and encapsulated with the anticancer drug doxorubicin (DOX) is reported. An amphiphilic metallopolymer PolyRuCHL that contains a poly(ethylene glycol) (PEG) block and a red-light-responsive ruthenium (Ru)-containing block is synthesized. Chlorambucil is covalently conjugated to the Ru moieties of PolyRuCHL. Encapsulation of DOX into PolyRuCHL in an aqueous solution results in DOX@PolyRuCHL micelles. The DOX@PolyRuCHL micelles are efficiently taken up by the multidrug-resistant breast cancer cell line MCF-7R and which carries DOX into the cells. Free DOX, without the nanocarriers, is not taken up by MCF-7R or pumped out of MCF-7R via P-glycoproteins. Red light irradiation of DOX@PolyRuCHL micelles triggers the release of chlorambucil-conjugated Ru moieties and DOX. Both act synergistically to inhibit the growth of multidrug-resistant cancer cells. Furthermore, the inhibition of the growth of multidrug-resistant tumors in a mouse model using DOX@PolyRuCHL micelles is demonstrated. The design of red-light-responsive metallopolymer nanocarriers with both conjugated and encapsulated drugs opens up an avenue for photoactivated chemotherapy against multidrug-resistant tumors.


Assuntos
Antineoplásicos , Rutênio , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Clorambucila/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Micelas , Fototerapia , Polietilenoglicóis , Polímeros/farmacologia
3.
Langmuir ; 38(42): 12961-12967, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36239606

RESUMO

The attachment of bio-fluids to surfaces promotes the transmission of diseases. Superhydrophobic textiles may offer significant advantages for reducing the adhesion of bio-fluids. However, they have not yet found widespread use because dried remnants adhere strongly and have poor mechanical or chemical robustness. In addition, with the massive use of polymer textiles, features such as fire and heat resistance can reduce the injuries and losses suffered by people in a fire accident. We developed a superhydrophobic textile covered with a hybrid coating of titanium dioxide and polydimethylsiloxane (TiO2/PDMS). Such a textile exhibits low adhesion to not only bio-fluids but also dry blood. Compared to a hydrophilic textile, the peeling force of the coated textile on dried blood is 20 times lower. The textile's superhydrophobicity survives severe treatment by sandpaper (400 mesh) at high pressure (8 kPa) even if some of its microstructures break. Furthermore, the textile shows excellent heat resistance (350 °C) and flame-retardant properties as compared to those of the untreated textile. These benefits can greatly inhibit the flame spread and reduce severe burns caused by polymer textiles adhering to the skin when melted at high temperatures.


Assuntos
Retardadores de Chama , Humanos , Têxteis , Interações Hidrofóbicas e Hidrofílicas , Dimetilpolisiloxanos , Polímeros
4.
Macromol Rapid Commun ; 43(12): e2100892, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35174569

RESUMO

The use of nanoparticles as carriers is an extremely promising way for administration of therapeutic agents, such as drug molecules, proteins, and nucleic acids. Such nanocarriers (NCs) can increase the solubility of hydrophobic compounds, protect their cargo from the environment, and if properly functionalized, deliver it to specific target cells and tissues. Polymer-based NCs are especially promising, because they offer high degree of versatility and tunability. However, in order to get a full advantage of this therapeutic approach and develop efficient delivery systems, a careful characterization of the NCs is needed. This review highlights the fluorescence correlation spectroscopy (FCS) technique as a powerful and versatile tool for NCs characterization at all stages of the drug delivery process. In particular, FCS can monitor and quantify the size of the NCs and the drug loading efficiency after preparation, the NCs stability and possible interactions with, e.g., plasma proteins in the blood stream and the kinetic of drug release in the cytoplasm of the target cells.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Polímeros/química , Espectrometria de Fluorescência/métodos
5.
Macromol Rapid Commun ; 43(12): e2100733, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338785

RESUMO

Drops sliding down an adaptive surface lead to changes of the dynamic contact angles. Two adaptation processes play a role: 1) the adaptation of the surface upon bringing it into contact to the drop (wetting) and 2) the adaptation of the surface after the drop passed (dewetting). In order to study both processes, the authors investigate samples made from random styrene (PS)/acrylic acid (PAA) copolymers, which are exposed to water. Sum-frequency generation spectroscopy and tilted-plate measurements indicate that during wetting, the PS segments displace from the interface, while PAA segments are enriched. This structural adaptation of the PS/PAA random copolymer to water remains after dewetting. Annealing the adapted polymer induces reorientation of the PS segments to the surface.


Assuntos
Acrilatos , Água , Acrilatos/química , Polímeros/química , Molhabilidade
6.
Macromol Rapid Commun ; 41(1): e1900413, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31737964

RESUMO

Photoswitchable compounds are promising materials for solar-thermal energy conversion and storage. In particular, photoresponsive azobenzene-containing compounds are proposed as materials for solar-thermal fuels. In this feature article, solar-thermal fuels based on azobenzene-containing polymers (azopolymers) are reviewed. The mechanism of azopolymer-based solar-thermal fuels is introduced, and computer simulations and experimental results on azopolymer-based solar-thermal fuels are highlighted. Different types of azopolymers such as linear azopolymers, 2D azopolymers, and conjugated azopolymers are addressed. The advantages and limitations of these azopolymers for solar-thermal energy conversion and storage, along with the remaining challenges of azopolymer-based solar-thermal fuels, are discussed.


Assuntos
Compostos Azo/química , Polímeros/química , Energia Solar , Isomerismo , Nanotubos de Carbono/química , Raios Ultravioleta
7.
Macromol Rapid Commun ; 40(21): e1900395, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31507007

RESUMO

The synthesis of ionogels with a responsive, self-replenishing surface for combating biofouling is described. Ionogels are prepared by infiltrating poly(vinylidene fluoride-co-hexafluoropropylene) with binary mixtures of ionic liquids (IL): 1-octadecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([C18 C1 im][NTf2 ], melting point Tm = 55 °C) and 1-hexyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide ([C6 C1 im][NTf2 ], Tm = -9 °C). The IL mixtures release spontaneously from the gel matrix and eventually crystallize on the surface. This leads to self-replenishment of the surface of ionogels even after mechanical damage. The incorporation of [C6 C1 im][NTf2 ] provides the antimicrobial efficacy of ionogels while the crystals of [C18 C1 im][NTf2 ] serve as a skeleton maintaining [C6 C1 im][NTf2 ] on the surface. By heating, the ionogel surface transforms from solid to liquid-infused state-the removal of biofilms/bacteria developed under a long time of colonization is facilitated. The antimicrobial efficacy is maintained even after several cycles of biofilm formation and detachment. This work provides an opportunity to apply ionogels as functional coatings with renewable antibiofouling properties.


Assuntos
Incrustação Biológica/prevenção & controle , Líquidos Iônicos/farmacologia , Polivinil/farmacologia , Líquidos Iônicos/química , Estrutura Molecular , Tamanho da Partícula , Polivinil/química , Propriedades de Superfície
8.
Macromol Rapid Commun ; 39(14): e1800087, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687518

RESUMO

A unified theory for the imbibition dynamics of entangled polymer melting into nanopores is presented. Experiments demonstrate the validity of t1/2 dependence but contradict the predictions of the classical Lucas-Washburn equation because of the prefactor. A reversal in dynamics of capillary filling is reported with increasing polymer molecular weight. Polymer imbibition under nanometer confinement can be discussed by two mechanisms: one is the standard hydrodynamic flow, resulting in a parabolic flow profile. When the inner wall has a strong attraction to the polymer, a layer of immobile chains is created, resulting in an increase of the effective viscosity and to slower imbibition. The other is the reptation model proposed by Johner et al., leading to a plug flow profile and to the reduction in the effective viscosity (faster imbibition). The reversal in dynamics of polymer imbibition can be explained by the competition between these two mechanisms.


Assuntos
Nanoporos , Polímeros/química , Simulação por Computador , Peso Molecular , Viscosidade
9.
Macromol Rapid Commun ; 39(15): e1800282, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29900622

RESUMO

Supramolecular gels made from 2D building blocks are emerging as one of the novel multifunctional soft materials for various applications. This study reports on a class of supramolecular nanosheet gels formed through a reversible self-assembly process involving both intramolecular folding and intermolecular self-assembly of poly[oligo(ethylene glycol)-co-(phenyl-capped bithiophenes)]. Such hierarchical self-assembled structure allows the gels to switch between sol and gel states under either redox or thermostimulus. Moreover, the gels illustrate high Young's moduli, compared to their controls that are made from the same oligo(ethylene glycol) and phenyl-capped bithiophenes blocks but have highly covalent-crosslinked structures. The example might open a window for emerging supramolecular 2D materials to develop mechanically robust and stimuli-responsive soft materials without compromising their intrinsic functions.


Assuntos
Nanoestruturas/química , Polímeros/química , Temperatura , Módulo de Elasticidade , Géis/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Polímeros/síntese química , Propriedades de Superfície
10.
Macromol Rapid Commun ; 37(7): 584-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26822617

RESUMO

Poly(n-butylacrylate)@polystyrene nanoparticles behaving as a capsule-based sealing nanoadditive are synthesized through an optimized semicontinuous emulsion polymerization protocol. Solid state time-domain (1)H-NMR and (13)C magic angle spinning (MAS) NMR analysis suggest strong phase separation. Line width of (13)C resonances in cross polarization and single pulse experiment MAS-NMR spectra indicates that the peculiar mobility of each phase is preserved at the nanoscale. Atomic force spectroscopy (AFM) shows the permanence of spherical shape in absence of solvent (i.e., subsequent to strong capillary and surface forces) up to moderate external load, as well as the possibility of plastically deforming the polystyrene shell and ultimately triggering the nanoparticle flow at higher force loads. The breakdown characteristic of the nanoparticle shows for the first time baroplastic behavior on a single particle with precise biphasic core@shell morphology.


Assuntos
Nanopartículas/química , Poliestirenos/química , Acrilatos/química , Difusão Dinâmica da Luz , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Polimerização , Temperatura de Transição
11.
Soft Matter ; 11(38): 7656-62, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26292617

RESUMO

We report a novel red-light-responsive supramolecule. The tetra-ortho-methoxy-substituted azobenzene (mAzo) and ß-cyclodextrin (ß-CD) spontaneously formed a supramolecular complex. The substituted methoxy groups shifted the responsive wavelength of the azo group to the red light region, which is in the therapeutic window and desirable for biomedical applications. Red light induced the isomerization of mAzo and the disassembly of the mAzo/ß-CD supramolecular complex. We synthesized a mAzo-functionalized polymer and a ß-CD-functionalized polymer. Mixing the two polymers in an aqueous solution generated a supramolecular hydrogel. Red light irradiation induced a gel-to-sol transition as a result of the disassembly of the mAzo/ß-CD complexes. Proteins were loaded in the hydrogel. Red light could control protein release from the hydrogel in tissue due to its deep penetration depth in tissue. We envision the use of red-light-responsive supramolecules for deep-tissue biomedical applications.


Assuntos
Compostos Azo/química , Preparações de Ação Retardada/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Soroalbumina Bovina/administração & dosagem , beta-Ciclodextrinas/química , Animais , Bovinos , Isomerismo , Luz
12.
Soft Matter ; 11(3): 506-15, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25415839

RESUMO

We demonstrate the fabrication of superhydrophobic surfaces consisting of micropillars with hydrophobic sidewalls and hydrophilic tops, referred to as Janus micropillars. Therefore we first coat a micropillar array with a mono- or bilayer of polymeric particles, and merge the particles together to shield the top faces while hydrophobizing the walls. After removing the polymer film, the top faces of the micropillar arrays can be selectively chemically functionalised with hydrophilic groups. The Janus arrays remain superhydrophobic even after functionalisation as verified by laser scanning confocal microscopy. The robustness of the superhydrophobic behaviour proves that the stability of the entrapped air cushion is determined by the forces acting at the rim of the micropillars. This insight should stimulate a new way of designing super liquid-repellent surfaces with tunable liquid adhesion. In particular, combining superhydrophobicity with the functionalisation of the top faces of the protrusions with hydrophilic groups may have exciting new applications, including high-density microarrays for high-throughput screening of bioactive molecules, cells, or enzymes or efficient water condensation. However, so far chemical attachment of hydrophilic molecules has been accompanied with complete wetting of the surface underneath. The fabrication of superhydrophobic surfaces where the top faces of the protrusions can be selectively chemically post-functionalised with hydrophilic molecules, while retaining their superhydrophobic properties, is both promising and challenging.


Assuntos
Nanotubos/química , Polímeros/química , Molhabilidade
13.
Macromol Rapid Commun ; 36(11): 1129-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25929974

RESUMO

Many natural materials are complex composites whose mechanical properties are often outstanding considering the weak constituents from which they are assembled. Nacre, made of inorganic (CaCO3 ) and organic constituents, is a textbook example because of its strength and toughness, which are related to its hierarchical structure and its well-defined organic-inorganic interface. Emulating the construction principles of nacre using simple inorganic materials and polymers is essential for understanding how chemical composition and structure determine biomaterial functions. A hard multilayered nanocomposite is assembled based on alternating layers of TiO2 nanoparticles and a 3-hydroxy-tyramine (DOPA) substituted polymer (DOPA-polymer), strongly cemented together by chelation through infiltration of the polymer into the TiO2 mesocrystal. With a Young's modulus of 17.5 ± 2.5 GPa and a hardness of 1.1 ± 0.3 GPa the resulting material exhibits high resistance against elastic as well as plastic deformation. A key feature leading to the high strength is the strong adhesion of the DOPA-polymer to the TiO2 nanoparticles.


Assuntos
Di-Hidroxifenilalanina/química , Nanopartículas Metálicas/química , Polímeros/química , Titânio/química , Carbonato de Cálcio/química , Módulo de Elasticidade , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Polímeros/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Langmuir ; 30(37): 11175-82, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25178923

RESUMO

Spatular terminals on the toe pads of a gecko play an important role in directional adhesion and friction required for reversible attachment. Inspired by the toe pad design of a gecko, we study friction of polydimethylsiloxane (PDMS) micropillars terminated with asymmetric (spatular-shaped) overhangs. Friction forces in the direction of and against the spatular end were evaluated and compared to friction forces on symmetric T-shaped pillars and pillars without overhangs. The shape of friction curves and the values of friction forces on spatula-terminated pillars were orientation-dependent. Kinetic friction forces were enhanced when shearing against the spatular end, while static friction was stronger in the direction toward the spatular end. The overall friction force was higher in the direction against the spatula end. The maximum value was limited by the mechanical stability of the overhangs during shear. The aspect ratio of the pillar had a strong influence on the magnitude of the friction force, and its contribution surpassed and masked that of the spatular tip for aspect ratios of >2.


Assuntos
Biomimética , Dimetilpolisiloxanos/química , Fricção , Animais , Cinética , Lagartos , Propriedades de Superfície
15.
Macromol Rapid Commun ; 35(23): 1994-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25346178

RESUMO

The hierarchical self-assembly of an amphiphilic block copolymer, poly(N,N-dimethylacrylamide)-block-polystyrene with a very short hydrophilic block (PDMA10 -b-PS62 ), in large granular nanoparticles is reported. While these nanoparticles are stable in water, their disaggregation can be induced either mechanically (i.e., by applying a force via the tip of the cantilever of an atomic force microscope (AFM)) or by partial hydrolysis of the acrylamide groups. AFM force spectroscopy images show the rupture of the particle as a combination of collapse and flow, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of partly hydrolyzed nanoparticles provide a clear picture of the granular structure.


Assuntos
Acrilamidas/química , Nanopartículas/química , Polímeros/química , Poliestirenos/química
16.
Langmuir ; 29(52): 16075-83, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24320051

RESUMO

One way of measuring adhesion forces in fine powders is to place the particles on a surface, retract the surface with a high acceleration, and observe their detachment due to their inertia. To induce detachment of micrometer-sized particles, an acceleration in the order of 500,000g is required. We developed a device in which such high acceleration is provided by a Hopkinson bar and measured via laser vibrometry. Using a Hopkinson bar, the fundamental limit of mechanically possible accelerations is reached, since higher values cause material failure. Particle detachment is detected by optical video microscopy. With subsequent automated data evaluation a statistical distribution of adhesion forces is obtained. To validate the method, adhesion forces for ensembles of single polystyrene and silica particles on a polystyrene coated steel surface were measured under ambient conditions. We were able to investigate more than 150 individual particles in one experiment and obtained adhesion values of particles in a diameter range of 3-13 µm. Measured adhesion forces of small particles agreed with values from colloidal probe measurements and theoretical predictions. However, we observe a stronger increase of adhesion for particles with a diameter larger than roughly 7-10 µm. We suggest that this discrepancy is caused by surface roughness and heterogeneity. Large particles adjust and find a stable position on the surface due to their inertia while small particles tend to remain at the position of first contact. The new device will be applicable to study a broad variety of different particle-surface combinations on a routine basis, including strongly cohesive powders like pharmaceutical drugs for treatment of lung diseases.


Assuntos
Poliestirenos/química , Pós/química , Dióxido de Silício/química , Adesividade , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
Macromol Rapid Commun ; 33(2): 114-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22135050

RESUMO

Blends of chlorinated polyethylene and nylon-6/-6,6/-12 terpolyamide were prepared. The ratio of the two components was systematically varied within the blends. The mechanical behavior of the samples was analyzed with tensile tests and dynamical mechanical analysis showing that, for several ratios, materials with improved mechanical properties typical of thermoplastic elastomers were obtained. In such a mechanical regime, a co-continuous phase-separated morphology was clearly evidenced at the microscopic scale by 3D laser scanning confocal fluorescent microscopy (LSCFM). At blend compositions where plastic tensile behavior is observed, LSCFM reveals dispersed spheres of one component in the other.


Assuntos
Hidrocarbonetos Clorados/química , Imageamento Tridimensional , Nylons/química , Polietileno/química , Elastômeros/química , Microscopia Confocal/métodos , Propriedades de Superfície
18.
Macromol Rapid Commun ; 33(18): 1568-73, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22761004

RESUMO

The phase separation of the polymer blend polystyrene/poly(methyl phenyl siloxane) (PS/PMPS) is studied in situ by laser scanning confocal microscopy (LSCM) and by fluorescence correlation spectroscopy (FCS) at macroscopic and microscopic length scales, respectively. It is shown for the first time that FCS when combined with LSCM can provide independent information on the local concentration within the phase-separated domains as well as the interfacial width.


Assuntos
Polímeros/química , Espectrometria de Fluorescência/métodos , Microscopia Confocal/métodos , Transição de Fase
19.
Nano Lett ; 11(4): 1671-5, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21355534

RESUMO

The crystallization of highly isotactic polypropylene confined in self-ordered nanoporous alumina is studied by differential scanning calorimetry. A transformation from a predominantly heterogeneous to predominantly homogeneous nucleation takes place if the pore diameter is smaller than 65 nm. Crystallization is suppressed with decreasing pore size, and the absence of nucleation below 20 nm pores indicates the critical nucleus size. The results reported here might enhance the understanding of nanocomposites containing semicrystalline polymers and reveal design criteria for polymeric nanofibers with tailored mechanical and optical properties.


Assuntos
Óxido de Alumínio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polipropilenos/química , Cristalização/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Porosidade , Propriedades de Superfície
20.
Nano Lett ; 11(5): 2157-63, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21513331

RESUMO

We present a scaling formula for size-dependent viscosity coefficients for proteins, polymers, and fluorescent dyes diffusing in complex liquids. The formula was used to analyze the mobilities of probes of different sizes in HeLa and Swiss 3T3 mammalian cells. This analysis unveils in the cytoplasm two length scales: (i) the correlation length ξ (approximately 5 nm in HeLa and 7 nm in Swiss 3T3 cells) and (ii) the limiting length scale that marks the crossover between nano- and macroscale viscosity (approximately 86 nm in HeLa and 30 nm in Swiss 3T3 cells). During motion, probes smaller than ξ experienced matrix viscosity: η(matrix) ≈ 2.0 mPa·s for HeLa and 0.88 mPa·s for Swiss 3T3 cells. Probes much larger than the limiting length scale experienced macroscopic viscosity, η(macro) ≈ 4.4 × 10(-2) and 2.4 × 10(-2) Pa·s for HeLa and Swiss 3T3 cells, respectively. Our results are persistent for the lengths scales from 0.14 nm to a few hundred nanometers.


Assuntos
Citoplasma/metabolismo , Nanotecnologia/métodos , Células 3T3 , Animais , Linhagem Celular , Difusão , Células HeLa , Humanos , Camundongos , Micelas , Peso Molecular , Nanopartículas/química , Polímeros/química , Poliestirenos/química , Pressão , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA