Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 18(33): 6254-6263, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35946517

RESUMO

Functionalized cellulosics have shown promise as naturally derived thermoresponsive gelling agents. However, the dynamics of thermally induced phase transitions of these polymers at the lower critical solution temperature (LCST) are not fully understood. Here, with experiments and theoretical considerations, we address how molecular architecture dictates the mechanisms and dynamics of phase transitions for cellulose ethers. Above the LCST, we show that hydroxypropyl substituents favor the spontaneous formation of liquid droplets, whereas methyl substituents induce fibril formation through diffusive growth. In celluloses which contain both methyl and hydroxypropyl substituents, fibrillation initiates after liquid droplet formation, suppressing the fibril growth to a sub-diffusive rate. Unlike for liquid droplets, the dissolution of fibrils back into the solvated state occurs with significant thermal hysteresis. We tune this hysteresis by altering the content of substituted hydroxypropyl moieties. This work provides a systematic study to decouple competing mechanisms during the phase transition of multi-functionalized macromolecules.


Assuntos
Celulose , Éteres , Transição de Fase , Polímeros , Temperatura
2.
Int J Pharm ; 640: 122985, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37121493

RESUMO

Flash NanoPrecipitation (FNP) is a scalable, single-step process that uses rapid mixing to prepare nanoparticles with a hydrophobic core and amphiphilic stabilizing shell. Because the two steps of particle self-assembly - (1) core nucleation and growth and (2) adsorption of a stabilizing polymer onto the growing core surface - occur simultaneously during FNP, nanoparticles formulated at core loadings above approximately 70% typically exhibit poor stability or do not form at all. Additionally, a fundamental limit on the concentration of total solids that can be introduced into the FNP process has been reported previously. These limits are believed to share a common mechanism: entrainment of the stabilizing polymer into the growing particle core, leading to destabilization and aggregation. Here, we demonstrate a variation of FNP which separates the nucleation and stabilization steps of particle formation into separate sequential mixers. This scheme allows the hydrophobic core to nucleate and grow in the first mixing chamber unimpeded by adsorption of the stabilizing polymer, which is later introduced to the growing nuclei in the second mixer. Using this Sequential Flash NanoPrecipitation (SNaP) technique, we formulate stable nanoparticles with up to 90% core loading by mass and at 6-fold higher total input solids concentrations than typically reported.


Assuntos
Nanopartículas , Polímeros , Tamanho da Partícula , Polímeros/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA