Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Gastroenterology ; 162(4): 1183-1196, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968454

RESUMO

BACKGROUND & AIMS: N6-methyladenosine (m6A) governs the fate of RNAs through m6A readers. Colorectal cancer (CRC) exhibits aberrant m6A modifications and expression of m6A regulators. However, how m6A readers interpret oncogenic m6A methylome to promote malignant transformation remains to be illustrated. METHODS: YTH N6-methyladenosine RNA binding protein 1 (Ythdf1) knockout mouse was generated to determine the effect of Ythdf1 in CRC tumorigenesis in vivo. Multiomic analysis of RNA-sequencing, m6A methylated RNA immunoprecipitation sequencing, YTHDF1 RNA immunoprecipitation sequencing, and proteomics were performed to unravel targets of YTHDF1 in CRC. The therapeutic potential of targeting YTHDF1-m6A-Rho/Rac guanine nucleotide exchange factor 2 (ARHGEF2) was evaluated using small interfering RNA (siRNA) encapsulated by lipid nanoparticles (LNP). RESULTS: DNA copy number gain of YTHDF1 is a frequent event in CRC and contributes to its overexpression. High expression of YTHDF1 is significantly associated with metastatic gene signature in patient tumors. Ythdf1 knockout in mice dampened tumor growth in an inflammatory CRC model. YTHDF1 promotes cell growth in CRC cell lines and primary organoids and lung and liver metastasis in vivo. Integrative multiomics analysis identified RhoA activator ARHGEF2 as a key downstream target of YTHDF1. YTHDF1 binds to m6A sites of ARHGEF2 messenger RNA, resulting in enhanced translation of ARHGEF2. Ectopic expression of ARHGEF2 restored impaired RhoA signaling, cell growth, and metastatic ability both in vitro and in vivo caused by YTHDF1 loss, verifying that ARHGEF2 is a key target of YTHDF1. Finally, ARHGEF2 siRNA delivered by LNP significantly suppressed tumor growth and metastasis in vivo. CONCLUSIONS: We identify a novel oncogenic epitranscriptome axis of YTHDF1-m6A-ARHGEF2, which regulates CRC tumorigenesis and metastasis. siRNA-delivering LNP drug validated the therapeutic potential of targeting this axis in CRC.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Carcinogênese/genética , Neoplasias Colorretais/patologia , Humanos , Lipossomos , Camundongos , Nanopartículas , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
2.
Environ Sci Technol ; 56(7): 4142-4150, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35316033

RESUMO

p-Phenylenediamines (PPDs) have been extensively used in the rubber industry and found to be pervasive in various environmental compartments for decades, while their transformation products and associated ecological and human health risks remain largely unknown. Herein, we developed and implemented a mass spectrometry-based platform combined with self-synthesized standards for the investigation of rubber-derived quinones formed from PPD antioxidants. Our results demonstrated that five quinones are ubiquitously present in urban runoff, roadside soils, and air particles. All of the identified sources are closely related to mankind's activities. Among the identified quinones, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone has been recently found to be highly toxic, causing acute mortality of coho salmon in the Pacific Northwest. Ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry was then applied for quantification of the five quinones and their corresponding PPD antioxidants. The results revealed interesting distinct distribution and concentration patterns of PPD-derived quinones in different environmental matrices. Daily intake rates of these quinones in a compact city of Hong Kong were estimated to be varied from 1.08 ng/(kg·day) for adults to 7.30 ng/(kg·day) for children, which were higher than the exposure levels of their parent compounds. Considering the prevalence of the use of rubber products, the outcome of this study strongly suggests for additional toxicological studies to investigate potential ecological and human health risks of the newly discovered quinones.


Assuntos
Borracha , Água , Criança , Cromatografia Líquida , Humanos , Quinonas , Solo
3.
Environ Sci Technol ; 56(17): 12483-12493, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36005547

RESUMO

Plastic debris in the global biosphere is an increasing concern, and nanoplastic (NPs) toxicity in humans is far from being understood. Studies have indicated that NPs can affect mitochondria, but the underlying mechanisms remain unclear. The liver and lungs have important metabolic functions and are vulnerable to NP exposure. In this study, we investigated the effects of 80 nm NPs on mitochondrial functions and metabolic pathways in normal human hepatic (L02) cells and lung (BEAS-2B) cells. NP exposure did not induce mass cell death; however, transmission electron microscopy analysis showed that the NPs could enter the cells and cause mitochondrial damage, as evidenced by overproduction of mitochondrial reactive oxygen species, alterations in the mitochondrial membrane potential, and suppression of mitochondrial respiration. These alterations were observed at NP concentrations as low as 0.0125 mg/mL, which might be comparable to the environmental levels. Nontarget metabolomics confirmed that the most significantly impacted processes were mitochondrial-related. The metabolic function of L02 cells was more vulnerable to NP exposure than that of BEAS-2B cells, especially at low NP concentrations. This study identifies NP-induced mitochondrial dysfunction and metabolic toxicity pathways in target human cells, providing insight into the possibility of adverse outcomes in human health.


Assuntos
Metabolômica , Microplásticos , Humanos , Fígado/metabolismo , Pulmão , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo
4.
Environ Sci Technol ; 56(11): 6914-6921, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34551519

RESUMO

The wide use and continuous abrasion of rubber-related products appears to be leading to an incredible release of p-phenylenediamine (PPD) antioxidants in the environment. However, no related research has been conducted on the pollution characteristics and potential health risks of PM2.5-bound PPDs. We report for the first time the ubiquitous distributions of six emerging PPDs and a quinone derivative, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ), in PM2.5 from urban areas of China. Atmospheric contamination levels of PM2.5-bound PPDs were found to be mostly in pg m-3 amounts between 2018 and 2019. Urban vehicle rubber tire abrasion was found to probably contribute to the PPDs in PM2.5 and accounted for their significant spatiotemporal-dependent concentration variations. Furthermore, 6PPDQ, an emerging oxidation product of 6PPD in the environment, was first quantified (pg m-3) with a total detection rate of 81% in the urban PM2.5, demonstrating its broad existence. On the basis of the determined ambient concentrations, the annual intakes of PPDs and 6PPDQ for adults were not low, indicating their possible human health risks induced by long-term exposure. This study confirms the widespread occurrence of PPDs and 6PPDQ in PM2.5, showing that the pollution of such compounds in urban air should not be underestimated.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/análise , Antioxidantes , China , Monitoramento Ambiental , Humanos , Material Particulado/análise , Fenilenodiaminas , Quinonas , Borracha
5.
Anal Chem ; 92(21): 14346-14356, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32880171

RESUMO

Micro(nano)plastics (MNPs) are widely acknowledged as global environmental threat while determination methods for MNPs are still lacking and becoming a growing concern. This study provides a novel method for MNPs identification/quantification by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Factors affecting the measurement were optimized, including laser energy, matrix (M), analyte (A), cationization agent (C), and MAC volume ratio. Under the optimal conditions, the peaks representative of polystyrene (PS) and polyethylene terephthalate (PET) were identified, and the mass differences were consistent with the molecular weight of the corresponding oligomer. A quantitative correlation was built between normalized signal intensity and ln[polymer concentration] with a correlation coefficient above 0.96 for low-molecular-weight polymers and 0.98 for high-molecular-weight polymers. Furthermore, two types of environmental MNP samples were prepared, including aviation cup particles as fresh plastics and aged MNPs extracted from river sediment. By using MALDI-TOF MS, the PS-related MNPs (in both aviation cup and sediment) consisted of C8H8 and C16H16O oligomers, while the PET-related MNPs (only found in sediment) were identified with repeated units of C10H8O4 and C12H12O4. According to the quantitative correlation curve, the contents of PS and PET MNPs were quantified as 8.56 ± 0.04 and 28.71 ± 0.20 mg·kg-1, respectively, in the collected sediment. This study is the first attempt to propose a quantification method with the employment of MALDI-TOF MS for aged MNPs analysis in environmental samples, which can not only supply an effective method for MNP analysis but also inspire future studies on the in situ distribution and transformation of MNPs in environmental and biological samples.


Assuntos
Meio Ambiente , Microesferas , Nanopartículas/química , Plásticos/análise , Plásticos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peso Molecular , Polietilenotereftalatos/química , Poliestirenos/química
7.
Analyst ; 140(13): 4626-35, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25962738

RESUMO

Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.


Assuntos
Acrilatos/química , Cromatografia Líquida/métodos , Polimerização , Polímeros/química , Propilenoglicóis/química , Proteínas/isolamento & purificação , Zidovudina/química , Alcinos/química , Anestésicos/isolamento & purificação , Animais , Antibacterianos/isolamento & purificação , Azidas/química , Catálise , Bovinos , Cromatografia de Fase Reversa , Química Click , Cobre/química , Interações Hidrofóbicas e Hidrofílicas , Troca Iônica , Nucleosídeos/isolamento & purificação , Sulfonamidas/isolamento & purificação
8.
Sci Total Environ ; 912: 168946, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043812

RESUMO

Microplastics are plastic particles, films, and fibers with a diameter of < 5 mm. Given their long-standing existence in the environment and terrible increase in annual emissions, concerns were raised about the potential health risk of microplastics on human beings. In particular, the increased consumption of masks during the COVID-19 pandemic has dramatically increased human contact with microplastics. To date, the emergence of microplastics in the human body, such as feces, blood, placenta, lower airway, and lungs, has been reported. Related toxicological investigations of microplastics were gradually increased. To comprehensively illuminate the interplay of microplastic exposure and human health, we systematically reviewed the updated toxicological data of microplastics and summarized their mode of action, adverse effects, and toxic mechanisms. The emerging critical issues in the current toxicological investigations were proposed and discussed. Our work would facilitate a better understanding of MPs-induced health hazards for toxicological evaluation and provide helpful information for regulatory decisions.


Assuntos
Microplásticos , Humanos , Microplásticos/toxicidade , Pandemias
9.
Sci Total Environ ; 912: 169291, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104817

RESUMO

6PPD-quinone (6PPD-Q) has been identified as a ubiquitous contaminant in the surrounding locality, including air particles, roadside soils, dust, and water. Recently, the prevalence of 6PPD-Q in human urine has accentuated the urgency for investigating its biological fate. To address this, we conducted a stable isotope-assisted high-resolution mass spectrometry (HRMS) assay to unveil the distribution, metabolism, excretion, and toxicokinetic properties of this contaminant in a mouse model. Mice were fed with a single dose of deuterated 6PPD-Q-d5 at human-relevant exposure levels. Results indicated that 6PPD-Q was quickly assimilated and distributed into bloodstream and main organs of mice, with the concentrations reaching peaks under 1 h following administration. Notably, 6PPD-Q was primarily distributed in the adipose tissue, marked by a significant Cmax (p < 0.05), followed by the kidney, lung, testis, liver, spleen, heart, and muscle. In addition, our measurement demonstrated that 6PPD-Q can penetrate the blood-brain barrier of mice within 0.5 h after exposure. The half-lives (t1/2) of 6PPD-Q in serum, lung, kidney, and spleen of mice were measured at 12.7 ± 0.3 h, 20.7 ± 1.4 h, 21.6 ± 5.3 h, and 20.6 ± 2.8 h, respectively. Using HRMS combined with isotope tracing techniques, two novel hydroxylated metabolites of 6PPD-Q in the mice liver were identified for the first time, which provides new insights into its rapid elimination in-vivo. Meanwhile, fecal excretion was identified as the main excretory pathway for 6PPD-Q and its hydroxylated metabolites. Collectively, our findings extend the current knowledge on the biological fate and exposure status of 6PPD-Q in a mouse model, which has the potential to be extrapolated to humans.


Assuntos
Benzoquinonas , Quinonas , Borracha , Humanos , Masculino , Camundongos , Animais , Espectrometria de Massas , Isótopos
10.
Sci Bull (Beijing) ; 69(5): 621-635, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185590

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) has attracted significant attention due to its highly acute lethality to sensitive salmonids. However, studies investigating the mechanisms underlying its acute toxicity have been lacking. In this work, we demonstrated the sensitivity of rainbow trout to 6PPDQ-induced mortality. Moribund trout exhibited significantly higher brain concentrations of 6PPDQ compared to surviving trout. In an in vitro model using human brain microvascular endothelial cells, 6PPDQ can penetrate the blood-brain barrier and enhance blood-brain barrier permeability without compromising cell viability. The time spent in the top of the tank increased with rising 6PPDQ concentrations, as indicated by locomotion behavior tests. Furthermore, 6PPDQ influenced neurotransmitter levels and mRNA expression of neurotransmission-related genes in the brain and exhibited strong binding affinity to target neurotransmission-related proteins using computational simulations. The integrated biomarker response value associated with neurotoxicity showed a positive linear correlation with trout mortality. These findings significantly contribute to filling the knowledge gap between neurological impairments and apical outcomes, including behavioral effects and mortality, induced by 6PPDQ.


Assuntos
Oncorhynchus mykiss , Animais , Humanos , Oncorhynchus mykiss/fisiologia , Borracha , Células Endoteliais
11.
Sci Total Environ ; 871: 162157, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36775174

RESUMO

The interaction of microplastics (MPs) and organic pollutants has recently become a focus of investigation. To understand how microplastic residues affect the migration of organic pollutants, it is necessary to examine the adsorption and desorption behavior of organic pollutants on MPs. In this study, integrated adsorption/desorption experiments and theoretical calculations were used to clarify the adsorption mechanism of 2-hydroxynaphthalene (2-OHN), naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by polyvinyl chloride microplastics (PVC-MPs). Based on the phenomenological mathematical models, the rate-limiting step for analyte adsorption onto PVC-MPs was adsorption onto active sites (R2 = 0.865-0.995). Except for PHE, analyte adsorption isotherms were well described by the Freundlich model (R2 = 0.992-0.998), and adsorption thermodynamics showed that analyte adsorption on PVC-MPs was a spontaneous exothermic process (ΔH0 < 0; ΔG0 < 0). Based on the order of adsorption efficiency of 2-OHN < NAP < PHE < PYR, which is identical to the competitive adsorption experiment, polycyclic aromatic hydrocarbon (PAH) adsorption on PVC-MPs increased as the aromatic ring number increased and the hydroxyl content decreased. The release of 2-OHN (49 %-52 %) from PVC-MPs into the simulated gastrointestinal environment was greater than that of NAP (5.5 %-5.7 %). Theoretical calculations and adsorption tests indicated that hydrophobic interaction was the primary influence on the adsorption of PAHs and their hydroxylated derivatives by PVC-MPs. These findings improve our understanding of MPs' behavior and dangers as pollutant carriers in the aquatic environment and help us develop recommendations for the pollution control of MPs.


Assuntos
Poluentes Ambientais , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Humanos , Microplásticos/química , Plásticos/química , Cloreto de Polivinila , Água , Adsorção , Naftalenos , Hidrocarbonetos Policíclicos Aromáticos/análise , Fenantrenos/análise , Pirenos/análise , Poluentes Ambientais/química , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 862: 160646, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493839

RESUMO

Plastic pollution is recognized as a major threat to ecosystems in the 21st century. Large plastic objects undergo biotic and abiotic degradation to generate micro- and nano-sized plastic pieces. Despite tremendous efforts to evaluate the adverse effects of microplastics, a comprehensive understanding of the toxicity of nanoplastics remains elusive, especially at the protein level. To this end, we used isobaric-tag-for-relative-and-absolute-quantitation-based quantitative proteomics to investigate the proteome dynamics of the soil nematode Caenorhabditis elegans in response to exposure to 100 nm polystyrene nanoplastics (PS-NPs). After 48 h of exposure to 0.1, 1, or 10 mg/L PS-NPs, 136 out of 1684 proteins were differentially expressed and 108 of these proteins were upregulated. These proteins were related to ribosome biogenesis, translation, proteolysis, kinases, protein processing in the endoplasmic reticulum, and energy metabolism. Remarkably, changes in proteome dynamics in response to exposure to PS-NPs were consistent with the phenotypic defects of C. elegans. Collectively, our findings demonstrate that disruption of proteome homeostasis is a biological consequence of PS-NPs accumulation in C. elegans, which provides insights into the molecular mechanisms underlying the toxicology of nanoplastics.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Animais , Caenorhabditis elegans , Plásticos , Microplásticos/toxicidade , Proteoma , Proteômica , Ecossistema , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Nanopartículas/toxicidade
13.
Sci Total Environ ; 821: 153471, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101490

RESUMO

As a kind of emerging pollutant, microplastics (MPs) play an important role as a carrier for pollutant migration in the water environment. Carried by the MPs, benzotriazoles, and benzothiazoles (collectively referred to as BTs)1 are ubiquitous water contaminants. In this paper, the adsorption behavior of BTs on polyvinyl chloride (PVC) MPs was first studied systematically to explain the adsorptive mechanisms and the consequential pollution caused by the absorption-desorption process. The studies on kinetics, isotherms, and thermodynamics revealed that the adsorption of BTs on PVC MPs was a multi-rate, heterogeneous multi-layer, and exothermic process, which was affected by external diffusion, intra-particle diffusion, and dynamic equilibrium. The factors including pH, salinity, and particle size also influenced the adsorption process. In the multi-solute system, competitive adsorption would occur between different BTs. The desorption of BTs from PVC MPs was positively associated with the increase of adsorption amount. Based on the results, the adsorption mechanisms of PVC MPs were clarified, involving hydrophobic interaction, electrostatic force, and non-covalent bonds. It was demonstrated that BTs in the water environment could most probably be accumulated and migrated through MPs, and eventually carried into organisms, posing an increased risk to the ecological environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Benzotiazóis , Plásticos/química , Cloreto de Polivinila , Triazóis , Água , Poluentes Químicos da Água/análise
14.
J Hazard Mater ; 437: 129361, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35749897

RESUMO

Microplastics (MPs; <5 mm) in the biosphere draws public concern about their potential health impacts. Humans are potentially exposed to MPs via ingestion, inhalation, and dermal contact. Ingestion and inhalation are the two major exposure pathways. An adult may consume approximately 5.1 × 103 items from table salts and up to 4.1 × 104 items via drinking water annually. Meanwhile, MP inhalation intake ranges from 0.9 × 104 to 7.9 × 104 items per year. The intake of MPs would be further distributed in different tissues and organs of humans depending on their sizes. The excretion has been discussed with the possible clearance ways (e.g., urine and feces). The review summarized the absorption, distribution, metabolic toxicity and excretion of MPs together with the attached chemicals. Moreover, the potential implications on humans are also discussed from in vitro and in vivo studies, and connecting the relationship between the physicochemical properties and the potential risks. This review will contribute to a better understanding of MPs as culprits and/or vectors linking to potential human health hazards, which will help outline the promising areas for further revealing the possible toxicity pathways.


Assuntos
Água Potável , Poluentes Químicos da Água , Monitoramento Ambiental , Corpo Humano , Humanos , Microplásticos/toxicidade , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
15.
J Colloid Interface Sci ; 614: 322-336, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104706

RESUMO

HYPOTHESIS: Precise modulation of immuno-inflammatory response is crucial to control periodontal diseases and related systemic comorbidities. The present nanosystem with the controlled-release and cell-penetrating manner enhances the inflammation modulation effects of baicalein in human gingival epithelial cells (hGECs) for better oral healthcare. EXPERIMENTS: We constructed a red-emissive mesoporous silica nanoparticle-based nanosystem with cell-penetrating poly(disulfide) (CPD) capping, through a facile in-situ polymerization approach. It was featured with a glutathione-responsive manner and instant cellular internalization capacity for precisely delivering baicalein intracellularly. Laboratory experiments assessed whether and how the nanosystem per se with the delivered baicalein could modulate immuno-inflammatory responses in hGECs. FINDINGS: The in-situ polymerized CPD layer capped the nanoparticles and yet controlled the release of baicalein in a glutathione-responsive manner. The CPD coating could facilitate cellular internalization of the nanosystem via endocytosis and thiol-mediated approaches. Notably, the intracellularly released baicalein effectively downregulated the expression of pro-inflammatory cytokines through inhibiting the NF-κB signaling pathway. The nanosystem per se could modulate immuno-inflammatory responses by passivating the cellular response to interlukin-1ß. This study highlights that the as-synthesized nanosystem may serve as a novel multi-functional vehicle to modulate innate host response via targeting the NF-κB pathway for precision healthcare.


Assuntos
Dissulfetos , Glutationa , Imunomodulação , Nanopartículas , Dióxido de Silício , Dissulfetos/química , Sistemas de Liberação de Medicamentos , Flavanonas/administração & dosagem , Glutationa/química , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Doenças Periodontais/tratamento farmacológico , Polimerização , Porosidade , Dióxido de Silício/química
16.
Sci Total Environ ; 790: 148077, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34090159

RESUMO

Pollutant-attached microplastics have received increasing attention in recent years. However, information regarding the influence of hydroxyl group content of pollutants on the adsorption and desorption behavior is unclear, which affects their fate and risks in the aquatic environment. In this study, we investigated the adsorption and desorption behavior of anthracene (ANT) and its hydroxy derivatives (OHAs), including 2-hydroxyanthracene (MOHA), 2,6-dihydroxyanthracene (DOHA), and 1,8,9-trihydroxyanthracene (TOHA) on polyvinyl chloride (PVC) microplastics, and their interaction mechanism through the batch, characterization, and computational experiments. The results showed that the adsorption of ANT and OHAs on PVC microplastics conformed to the pseudo-second-order kinetic model and was exothermic spontaneously. The adsorption efficiency on PVC followed the order of ANT > MOHA > DOHA > TOHA, indicating that increase in hydroxyl group substitution degree will inhibit pollutant adsorption on PVC microplastics. Conversely, the release amounts of MOHA from PVC into simulated gastric fluids were higher than those of ANT. Experimental and computational results suggested that the affinity of ANT/OHAs to PVC microplastics was the most likely outcome in hydrophobic effect, electrostatic repulsion, and CH-π interaction forces. These findings help elucidate the mechanisms of pollutant adsorption on microplastics and evaluate the risk of pollutant-attached microplastics in the aquatic environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Antracenos , Plásticos , Cloreto de Polivinila , Poluentes Químicos da Água/análise
17.
J Hazard Mater ; 392: 122251, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109790

RESUMO

Chiral micropollutant analysis in pharmaceuticals and personal care products (PPCPs) is interesting but challenging. We firstly developed a series of chiral molecularly imprinted polymeric (CMIP) stir bar sorptive extraction coatings by combining a chiral template with chiral functional monomers via a click reaction for naproxen enantiomer analysis in PPCPs. Heterochiral selectivity was observed in the molecule recognition of the CMIP coatings, which demonstrated good adsorption capability for the chiral template and its structurally similar chiral compounds. The coatings also exhibited excellent enrichment capability for chiral analytes in an aqueous matrix. The surface morphology and pore structure of the CMIP coatings were characterized. The molecular interactions between the chiral template and chiral functional monomer were investigated through UV-vis spectroscopy and theoretical calculations to prove the effective interactions existing in the heterochiral MIPs. The CMIP coatings were used to enrich naproxen enantiomers in chiral drug and environmental water samples, and satisfactory recoveries (83.98 %-118.88 %) with a relative standard deviation of 3.49 %-13.08 % were achieved. The heterochiral imprinted coating-based method provided a sensitive, selective, and effective enrichment strategy for chiral micropollutant analysis in PPCPs. This technique is critical for chiral molecule recognition and enantiomer analysis in complex samples.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Cosméticos/análise , Impressão Molecular , Naproxeno/análise , Preparações Farmacêuticas/análise , Polímeros/química , Adsorção , Anti-Inflamatórios não Esteroides/química , Contaminação de Medicamentos , Naproxeno/química , Estereoisomerismo
18.
Lab Chip ; 19(17): 2915-2924, 2019 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-31369010

RESUMO

Using an antimicrobial susceptibility test (AST) as an example, this work demonstrates a practical method to fabricate microfluidic chips entirely from polypropylene (PP) and the benefits for potential commercial use. Primarily caused by the misuse and abuse of antibiotics, antimicrobial resistance (AMR) is a major threat to modern medicine. The AST is a promising technique to help with the optimal use of antibiotics for reducing AMR. However, current phenotypic ASTs suffer from long turnaround time, while genotypic ASTs suffer from low reliability, and both are unaffordable for routine use. New microfluidics based AST methods are rapid but still unreliable as well as costly due to the PDMS chip material. Herein, we demonstrate a convenient method to fabricate whole PP microfluidic chips with high resolution and fidelity. Unlike PDMS chips, the whole PP chips showed better reliability due to their inertness; they are solvent-compatible and can be conveniently reused and recycled, which largely decreases the cost, and are environmentally friendly. We specially designed 3D chambers that allow for quick cell loading without valving/liquid exchange; this new hydrodynamic design satisfies the shear stress requirement for on-chip bacterial culture, which, compared to reported designs for similar purposes, allows for a simpler, more rapid, and high-throughput operation. Our system allows for reliable tracking of individual cells and acquisition of AST results within 1-3 hours, which is among the group of fastest phenotypic methods. The PP chips are more reliable and affordable than PDMS chips, providing a practical solution to improve current culture-based AST and benefiting the fight against AMR through helping doctors prescribe effective, narrow-spectrum antibiotics; they will also be broadly useful for other applications wherein a reliable, solvent-resistant, anti-fouling, and affordable microfluidic chip is needed.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Técnicas Analíticas Microfluídicas , Polipropilenos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Testes de Sensibilidade Microbiana , Técnicas Analíticas Microfluídicas/economia , Técnicas Analíticas Microfluídicas/instrumentação , Simulação de Dinâmica Molecular , Polipropilenos/química
19.
J Chromatogr A ; 1498: 90-98, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28131590

RESUMO

A hybrid monolithic column based on aminophenylboronic acid (APBA)-functionalized graphene oxide (GO) has been developed and used for selective enrichment of glycoproteins. The APBA/GO composites were homogeneously incorporated into a polymer monolithic column with the help of oligomer matrix and followed by in situ polymerization. The effect of dispersion of APBA/GO composites in the polymerization mixture on the performance of the monolithic column was explored in detail. The presence of graphene oxide not only enlarged the BET surface area from 6.3m2/g to 169.4m2/g, but also provided abundant boronic acid moieties for glycoprotein extraction, which improved the enrichment selectivity and efficiency for glycoproteins. The APBA/GO hybrid monolithic column was incorporated into a sequential injection system, which facilitated online extraction of proteins. Combining the superior properties of extraordinary surface area of GO and the affinity interaction of APBA to glycoproteins, the APBA/GO hybrid monolithic column showed higher enrichment factors for glycoproteins than other proteins without cis-diol-containing groups. Also, under comparable or even shorter processing time and without the addition of any organic solvent, it showed higher binding capacity toward glycoproteins compared with the conventional boronate affinity monolithic column. The practical applicability of this system was demonstrated by processing of egg white samples for extraction of ovalbumin and ovotransferrin, and satisfactory results were obtained by assay with SDS-PAGE.


Assuntos
Técnicas de Química Analítica/métodos , Glicoproteínas/isolamento & purificação , Grafite/química , Óxidos/química , Ácidos Borônicos/química , Técnicas de Química Analítica/instrumentação , Eletroforese em Gel de Poliacrilamida , Glicoproteínas/química , Compostos Orgânicos/química , Polimerização , Polímeros , Solventes/química
20.
Environ Sci Pollut Res Int ; 22(23): 18927-32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26208660

RESUMO

A gas chromatography-mass spectrometry (GC-MS) method was developed for the identification and quantification of 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) in toothpaste and mouthwash consumer products. Liquid-liquid extraction and solid-phase extraction were used in the sample preparation. The limit of detection was 0.96 ng/g in toothpaste and 0.83 ng/g in mouthwash. The accuracy represented by relative errors was less than 12.5%. The intra-day and inter-day precision, which are represented by the relative standard deviation values, were within 11.2 and 10.6%, respectively. The method was successfully applied to analyze 2,8-DCDD in toothpaste and mouthwash products, as well as that from the photo-degradation of triclosan spiked in both sample matrix.


Assuntos
Dioxinas/análise , Antissépticos Bucais/análise , Cremes Dentais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração Líquido-Líquido , Extração em Fase Sólida , Triclosan/análise , Triclosan/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA