Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(19): 7697-7705, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697043

RESUMO

Dual/multimodal imaging strategies are increasingly recognized for their potential to provide comprehensive diagnostic insights in cancer imaging by harnessing complementary data. This study presents an innovative probe that capitalizes on the synergistic benefits of afterglow luminescence and magnetic resonance imaging (MRI), effectively eliminating autofluorescence interference and delivering a superior signal-to-noise ratio. Additionally, it facilitates deep tissue penetration and enables noninvasive imaging. Despite the advantages, only a limited number of probes have demonstrated the capability to simultaneously enhance afterglow luminescence and achieve high-resolution MRI and afterglow imaging. Herein, we introduce a cutting-edge imaging platform based on semiconducting polymer nanoparticles (PFODBT) integrated with NaYF4@NaGdF4 (Y@Gd@PFO-SPNs), which can directly amplify afterglow luminescence and generate MRI and afterglow signals in tumor tissues. The proposed mechanism involves lanthanide nanoparticles producing singlet oxygen (1O2) upon white light irradiation, which subsequently oxidizes PFODBT, thereby intensifying afterglow luminescence. This innovative platform paves the way for the development of high signal-to-background ratio imaging modalities, promising noninvasive diagnostics for cancer.


Assuntos
Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética , Nanopartículas , Polímeros , Semicondutores , Imageamento por Ressonância Magnética/métodos , Animais , Elementos da Série dos Lantanídeos/química , Polímeros/química , Nanopartículas/química , Camundongos , Humanos , Gadolínio/química , Luminescência , Oxigênio Singlete/química , Ítrio/química , Fluoretos/química , Camundongos Nus
2.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163859

RESUMO

Ambrosia artemisiifolia (Amb a) contains many allergens. Allergic conjunctivitis caused by Ambrosia artemisiifolia and its related allergen-specific immunotherapy (AIT) are seldom studied at present. poly(DL-lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) is a very good nano-carrier, which has been applied in the medical field. In this context, we studied the immunotherapy effect and potential mechanism of recombinant Amb a 1 (rAmb a 1)-loaded PLGA-PEG nanoparticles. A mouse allergic conjunctivitis model was established with Ambrosia artemisiifolia crude extract, and the nanoparticles were used for AIT through direct observation of conjunctival tissue, degranulation of mast cells in conjunctival tissue, serum-specific antibodies, cytokines and other assessment models. The treatment of nanoparticles enhanced the secretion of T-helper 1 (Th1) cytokine Interferon-gama (IFN-γ) and the production of immunoglobulin G (IgG)2a (IgG2a), inhibited the secretion of T-helper 2 (Th2) cytokine Interleukin (IL)-13 and IL-4 and the level of IgE. Especially, degranulation of mast cells and expression of mast cell protease-1 (MCP-1) in conjunctival tissue was reduced significantly. In this study, we proved that the nanoparticles prepared by rAmb a 1 and PLGA-PEG have an immunotherapy effect on allergic conjunctivitis in mice.


Assuntos
Antígenos de Plantas/administração & dosagem , Conjuntivite Alérgica/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas/administração & dosagem , Proteínas de Plantas/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Células Th1/imunologia , Alérgenos/efeitos adversos , Ambrosia/química , Animais , Antígenos de Plantas/química , Conjuntivite Alérgica/etiologia , Conjuntivite Alérgica/patologia , Citocinas/metabolismo , Imunoglobulina E/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Proteínas de Plantas/química , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química
3.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615388

RESUMO

Lead contamination in aquatic products is one of the main hazard factors. The aptasensor is a promising detection method for lead ion (Pb(II)) because of its selectivity, but it is easily affected by pH. The combination of ion-imprinted polymers(IIP) with aptamers may improve their stability in different pH conditions. This paper developed a novel electrochemical biosensor for Pb(II) detection by using aptamer-imprinted polymer as a recognition element. The glassy carbon electrode was modified with gold nanoparticles and aptamers. After the aptamer was induced by Pb(II) to form a G-quadruplex conformation, a chitosan-graphene oxide was electrodeposited and cross-linked with glutaraldehyde to form an imprint layer, improving the stability of the biosensor. Under the optimal experimental conditions, the current signal change (∆I) showed a linear correlation of the content of Pb(II) in the range of 0.1-2.0 µg/mL with a detection limit of 0.0796 µg/mL (S/N = 3). The biosensor also exhibited high selectivity for the determination of Pb(II) in the presence of other interfering metal ion. At the same time, the stability of the imprinted layer made the sensor applicable to the detection environment with a pH of 6.4-8.0. Moreover, the sensor was successfully applied to the detection of Pb(II) in mantis shrimp.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Polímeros/química , Ouro/química , Chumbo , Grafite/química , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos
4.
Mikrochim Acta ; 187(7): 412, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601994

RESUMO

A core-satellite-structured surface molecularly imprinted polymer has been synthesized for the enrichment of 3-phenoxybenzaldehyde by pipette tip solid-phase extraction (SPE). In a typical sol-gel process, two silane reagents as functional monomers and 3-phenoxybenzoic acid as the dummy template, the surface imprinting layer was coated on the core-satellite silica microsphere, which formed the core-satellite-structured molecularly imprinted polymer (CSMIP). Compared to the silica-based core-shell ones, this CS-MIP exhibits a stunning surface area (142 m2 g-1) in micrometer size and also overcomes the aggregation trends of core-shell structure in nanoscale. Taking potassium permanganate solution as oxidizer and indicator, the adsorbed 3-phenoxybenzaldehyde can be a quantitatively determined through redox reaction after elution. The value of maximum adsorption capacity and imprinting factor of CS-MIP were calculated to be 87.5 µg mg-1 and 2.13, respectively. These CS-MIPs were packed into commercial pipette tip as the sorbent to concentrate 3-phenoxybenzaldehyde. Under the optimum condition, a liner relationship was achieved in the range 0.200 to 1.00 µg mL-1 and the limit of detection was 81 ng mL-1. Moreover, this customized SPE device exhibits good adsorption capability after six sequential adsorption-desorption cycles, and the high recovery range of 92.2~99.7% of spiked tap water assay demonstrated its potential application for real sample analysis. Graphical abstract Schematic presentation of core-satellite molecularly imprinted polymer preparation strategy and customized pipette tip solid-phase extraction device.


Assuntos
Benzaldeídos/análise , Polímeros Molecularmente Impressos/química , Extração em Fase Sólida/métodos , Adsorção , Benzaldeídos/química , Benzaldeídos/isolamento & purificação , Benzoatos/química , Colorimetria/métodos , Água Potável/análise , Impressão Molecular , Permanganato de Potássio/química , Extração em Fase Sólida/instrumentação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
5.
J Environ Manage ; 274: 111178, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32771774

RESUMO

Papermaking waste liquid (black liquor) is a serious source of water pollution worldwide. The subsequent treatment of it is very difficult cause it contains a large amount of lignin, inorganic salts, organic matter, and pigments, which lead to serious water pollution. Lignin is the main by-product of the paper industry and is the only natural aromatic recyclable resource. Its effective utilization rate is currently less than 3%. Therefore, how to effectively recycle lignin in papermaking waste liquid and further synthesize industrialized products is of great significance to the sustainable development and environmental protection. Besides, based on the shortage of petroleum resources in recent years, the application of biomass resources instead of petroleum resources in the industry is also an important issue. In this article, we explored the best optimal conditions for the oxypropylation and esterification of lignin, and prepared bio-bitumen based on modified lignin, and then applied it to the waterproof coating sheets. FTIR and mechanical properties (softening point, low-temperature flexibility, peel strength, etc.) were tested on the obtained waterproof coating sheets. The results show that the addition of modified lignin reduced the softening point and peel strength of the coating sheets. Interestingly, both oxypropylated lignin (OL) and esterified lignin (OEL) were very beneficial to resist the decrease in peel strength during the aging process, showing a significant improvement in the performance of the coating sheets after aging compared to the control.


Assuntos
Hidrocarbonetos , Lignina , Biomassa
6.
Macromol Rapid Commun ; 38(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28691315

RESUMO

Easy access to discrete nanoclusters in metal-folded single-chain nanoparticles (metal-SCNPs) and independent ultrafine sudomains in the assemblies via coordination-driven self-assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1 H NMR, dynamic light scattering, and NMR diffusion-ordered spectroscopy results demonstrate self-assembly into metal-SCNPs (>70% imidazole-units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self-assembly of metal-SCNPs (pH 4.6-5.0) and shrinkage (pH 5.0-5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6-7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub-5-nm subdomains in metal-SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media-tunable discrete ultrafine interiors in metal-SCNPs and assemblies have hence been achieved.


Assuntos
Nanopartículas Metálicas/química , Cobre/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Polímeros , Água/química
7.
Anal Biochem ; 476: 59-66, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25660529

RESUMO

Clenbuterol (CL), which promotes the growth of muscular tissue and the reduction of body fat in pigs and cattle, has been confirmed to be a potential hazard to human health. In this study, a monoclonal antibody to clenbuterol (CL mAb) from a hybridoma culture supernatant was purified by an aqueous two-phase system (ATPS) at different polyethylene glycol (PEG) concentrations, PEG molecular weights, pH values, and NaCl concentrations. Then the CL mAb was immobilized in situ by directly adding polystyrene microspheres (PSMSs) into a PEG phase containing CL mAb. Using the immobilized antibody, an immunosensor was constructed to detect the CL residues in pork samples. The results showed that using an ATPS composed of 15% (w/w) PEG6000, 15% (w/w) phosphate, and 15% (w/w) NaCl at pH 8.0, the partition coefficient was 7.24, the activity recovery was 87.86%, and the purification fold was 2.88. The PEG-CL mAb-PSMS retained approximately 98% of its initial activity after 30-ml phosphate buffer (PBS) washings. After 30days of storage, the CL mAb-PSMS lost nearly 75% of its activity, whereas the PEG-CL mAb-PSMS retained as much as 95% of its initial activity. Furthermore, the constructed immunosensor obtained recoveries of 90.5 to 102.6% when applied to pork samples spiked with CL.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Clembuterol/análise , Clembuterol/imunologia , Animais , Bovinos , Humanos , Polietilenoglicóis/química
8.
Macromol Rapid Commun ; 36(16): 1521-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26140705

RESUMO

Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts.


Assuntos
Nanopartículas/química , Polímeros/química , Água , Polímeros/síntese química , Eletricidade Estática
9.
Biomater Sci ; 12(17): 4427-4439, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39037353

RESUMO

Mesenchymal stem cells (MSCs) exhibit substantial potential for osteoarthritis (OA) therapy through cartilage regeneration, yet the realization of optimal therapeutic outcomes is hampered by their limited intrinsic reparative capacities. Herein, MSCs are engineered with circular mRNA (cmRNA) encoding fibroblast growth factor 18 (FGF18) encapsulated within lipid nanoparticles (LNP) derived from a glycerolipid to facilitate OA healing. A proprietary biodegradable and ionizable glycerolipid, TG6A, with branched tails and five ester bonds, forms LNP exhibiting above 9-fold and 41-fold higher EGFP protein expression in MSCs than commercial LNP from DLin-MC3-DMA and ALC-0315, respectively. The introduction of FGF18 not only augmented the proliferative capacity of MSCs but also upregulated the expression of chondrogenic genes and glycosaminoglycan (GAG) content. Additionally, FGF18 enhanced the production of proteoglycans and type II collagen in chondrocyte pellet cultures in a three-dimensional culture. In an OA rat model, transplantation with FGF18-engineered MSCs remarkably preserved cartilage integrity and facilitated functional repair of cartilage lesions, as evidenced by thicker cartilage layers, reduced histopathological scores, maintenance of zone structure, and incremental type II collagen and extracellular matrix (ECM) deposition. Taken together, our findings suggest that TG6A-based LNP loading with cmRNA for engineering MSCs present an innovative strategy to overcome the current limitations in OA treatment.


Assuntos
Fatores de Crescimento de Fibroblastos , Células-Tronco Mesenquimais , Osteoartrite , Animais , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/terapia , Osteoartrite/patologia , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Nanopartículas/química , RNA Circular/genética , RNA Circular/metabolismo , Condrócitos/metabolismo , Masculino , Condrogênese/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Humanos , Proliferação de Células/efeitos dos fármacos , Lipossomos
10.
J Hazard Mater ; 472: 134493, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38696960

RESUMO

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.


Assuntos
Biodegradação Ambiental , Hidrolases de Éster Carboxílico , Poliuretanos , Reciclagem , Poliuretanos/química , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Burkholderiales/enzimologia , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Plásticos/química , Plásticos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Poliésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA