Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 94(6): 2471-2478, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35171508

RESUMO

Saliva is a promising specimen for the detection of viruses that cause upper respiratory infections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to its cost-effectiveness and noninvasive collection. However, together with intrinsic enzymes and oral microbiota, children's unique dietary habits may introduce substances that interfere with diagnostic testing. To determine whether children's dietary choices impact SARS-CoV-2 molecular detection in saliva, we performed a diagnostic study that simulates testing of real-life specimens provided from healthy children (n = 5) who self-collected saliva at home before and at 0, 20, and 60 min after eating 20 foods they selected. Each of 72 specimens was split into two volumes and spiked with SARS-CoV-2-negative or SARS-CoV-2-positive clinical standards before side-by-side testing by reverse-transcription polymerase chain reaction matrix-assisted laser desorption ionization time-of-flight (RT-PCR/MALDI-TOF) assay. Detection of internal extraction control and SARS-CoV-2 nucleic acids was reduced in replicates of saliva collected at 0 min after eating 11 of 20 foods. Interference resolved at 20 and 60 min after eating all foods except hot dogs in one participant. This represented a significant improvement in the detection of nucleic acids compared to saliva collected at 0 min after eating (p = 0.0005). We demonstrate successful detection of viral nucleic acids in saliva self-collected by children before and after eating a variety of foods. Fasting is not required before saliva collection for SARS-CoV-2 testing by RT-PCR/MALDI-TOF, but waiting for 20 min after eating is sufficient for accurate testing. These findings should be considered for SARS-CoV-2 testing and broader viral diagnostics in saliva specimens.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Nasofaringe , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva , Manejo de Espécimes
2.
J Med Virol ; 93(9): 5481-5486, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33963565

RESUMO

As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections continue, there is a substantial need for cost-effective and large-scale testing that utilizes specimens that can be readily collected from both symptomatic and asymptomatic individuals in various community settings. Although multiple diagnostic methods utilize nasopharyngeal specimens, saliva specimens represent an attractive alternative as they can rapidly and safely be collected from different populations. While saliva has been described as an acceptable clinical matrix for the detection of SARS-CoV-2, evaluations of analytic performance across platforms for this specimen type are limited. Here, we used a novel sensitive RT-PCR/MALDI-TOF mass spectrometry-based assay (Agena MassARRAY®) to detect SARS-CoV-2 in saliva specimens. The platform demonstrated high diagnostic sensitivity and specificity when compared to matched patient upper respiratory specimens. We also evaluated the analytical sensitivity of the platform and determined the limit of detection of the assay to be 1562.5 copies/ml. Furthermore, across the five individual target components of this assay, there was a range in analytic sensitivities for each target with the N2 target being the most sensitive. Overall, this system also demonstrated comparable performance when compared to the detection of SARS-CoV-2 RNA in saliva by the cobas® 6800/8800 SARS-CoV-2 real-time RT-PCR Test (Roche). Together, we demonstrate that saliva represents an appropriate matrix for SARS-CoV-2 detection on the novel Agena system as well as on a conventional real-time RT-PCR assay. We conclude that the MassARRAY® system is a sensitive and reliable platform for SARS-CoV-2 detection in saliva, offering scalable throughput in a large variety of clinical laboratory settings.


Assuntos
Teste de Ácido Nucleico para COVID-19/normas , COVID-19/diagnóstico , Testes Diagnósticos de Rotina/normas , RNA Viral/genética , SARS-CoV-2/genética , Saliva/virologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/normas , Benchmarking , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/instrumentação , Teste de Ácido Nucleico para COVID-19/métodos , Testes Diagnósticos de Rotina/instrumentação , Testes Diagnósticos de Rotina/métodos , Humanos , Limite de Detecção , Nasofaringe/virologia , Manejo de Espécimes/normas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Plant J ; 99(5): 844-861, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31021015

RESUMO

Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice. The tip3 mutant displayed smaller and pale yellow anthers without mature pollen grains, abnormal Ubisch body morphology, no pollen wall formation, as well as delayed tapetum degeneration. Map-based cloning demonstrated that TIP3 encodes a conserved PHD-finger protein and further study confirmed that TIP3 functioned as a transcription factor with transcriptional activation activity. TIP3 is preferentially expressed in the tapetum and microspores during anther development. Moreover, TIP3 can physically interact with TDR, which is a key component of the transcriptional cascade in regulating tapetum development and pollen wall formation. Furthermore, disruption of TIP3 changed the expression of several genes involved in tapetum development and degradation, biosynthesis and transport of lipid monomers of sporopollenin in tip3 mutant. Taken together, our results revealed an unprecedented role for TIP3 in regulating Ubisch bodies and pollen exine formation, and presents a potential tool to manipulate male fertility for hybrid rice breeding.


Assuntos
Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Aquaporinas/genética , Aquaporinas/metabolismo , Biopolímeros , Carotenoides , Fragmentação do DNA , Regulação da Expressão Gênica de Plantas , Infertilidade/genética , Fenótipo , Pólen/citologia , Alinhamento de Sequência , Análise de Sequência de Proteína
4.
Gene ; 649: 63-73, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29355682

RESUMO

Anther cuticle and pollen exine are two elaborated lipid-soluble barriers protecting pollen grains from environmental and biological stresses. However, less is known about the mechanisms underlying the synthesis of these lipidic polymers. Here, we identified a no-pollen male-sterility mutant cyp703a3-3 from the indica restorer line Zhonghui 8015 (Zh8015) mutant library treated with 60Coγ-ray radiation. Histological analysis indicated that cyp703a3-3 underwent abnormal tapetal cells development, produced few orbicules and secreted less sporopollenin precursors to anther locule, as well as cutin monomers on anther. Genetic analysis revealed that cyp703a3-3 was controlled by a single recessive gene. Map-based cloning was performed to narrow down the mutant gene to a 47.78-kb interval on the chromosome 8 between two markers S15-29 and S15-30. Sequence analysis detected three bases (GAA) deletion in the first exon of LOC_Os08g03682, annotated as CYP703A3 with homologous sequences related to male sterility in Arabidopsis, causing the Asparagine deletion in the mutant site. Moreover, we transformed genomic fragment of CYP703A3 into cyp703a3-3, which male-sterility phenotype was recovered. Both the wild-type and cyp703a3-3 mutant 3D structure of CYP703A3 protein were modeled. Results of qPCR suggested CYP703A3 mainly expressed in anthers with greatest abundance at microspore stage, and genes involved in sporopollenin precursors formation and transportation, such as GAMYB, TDR, CYP704B2, DPW2, OsABCG26 and OsABCG15, were significantly reduced in cyp703a3-3. Collectively, our results further elaborated CYP703A3 plays vital role in anther cuticle and pollen exine development in rice (Oryza sativa L.).


Assuntos
Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Oryza/genética , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biopolímeros/genética , Biopolímeros/metabolismo , Carotenoides/genética , Carotenoides/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana/genética , Fenótipo , Pólen/genética , Pólen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA