Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 45: 102591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907618

RESUMO

The efficacy of Adoptive Cell Therapy (ACT) for solid tumor is still mediocre. This is mainly because tumor cells can hijack ACT T cells' immune checkpoint pathways to exert immunosuppression in the tumor microenvironment. Immune Checkpoint Inhibitors such as anti-PD-1 (aPD1) can counter the immunosuppression, but the synergizing effects of aPD1 to ACT was still not satisfactory. Here we demonstrate an approach to safely anchor aPD1-formed nanogels onto T cell surface via bio-orthogonal click chemistry before adoptive transfer. The spatial-temporal co-existence of aPD1 with ACT T cells and the responsive drug release significantly improved the treatment outcome of ACT in murine solid tumor model. The average tumor weight of the group treated by cell-surface anchored aPD1 was only 18 % of the group treated by equivalent dose of free aPD1 and T cells. The technology can be broadly applicable in ACTs employing natural or Chimeric Antigen Receptor (CAR) T cells.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Animais , Terapia Baseada em Transplante de Células e Tecidos , Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva , Camundongos , Nanogéis , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Microambiente Tumoral
2.
Adv Sci (Weinh) ; 11(23): e2401047, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569217

RESUMO

Cuproptosis is an emerging cell death pathway that depends on the intracellular Cu ions. Elesclomol (ES) as an efficient Cu ionophore can specifically transport Cu into mitochondria and trigger cuproptosis. However, ES can be rapidly removed and metabolized during intravenous administration, leading to a short half-life and limited tumor accumulation, which hampers its clinical application. Here, the study develops a reactive oxygen species (ROS)-responsive polymer (PCP) based on cinnamaldehyde (CA) and polyethylene glycol (PEG) to encapsulate ES-Cu compound (EC), forming ECPCP. ECPCP significantly prolongs the systemic circulation of EC and enhances its tumor accumulation. After cellular internalization, the PCP coating stimulatingly dissociates exposing to the high-level ROS, and releases ES and Cu, thereby triggering cell death via cuproptosis. Meanwhile, Cu2+-stimulated Fenton-like reaction together with CA-stimulated ROS production simultaneously breaks the redox homeostasis, which compensates for the insufficient oxidative stress treated with ES alone, in turn inducing immunogenic cell death of tumor cells, achieving simultaneous cuproptosis and immunotherapy. Furthermore, the excessive ROS accelerates the stimuli-dissociation of ECPCP, forming a positive feedback therapy loop against tumor self-alleviation. Therefore, ECPCP as a nanoplatform for cuproptosis and immunotherapy improves the dual antitumor mechanism of ES and provides a potential optimization for ES clinical application.


Assuntos
Cobre , Imunoterapia , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Animais , Camundongos , Imunoterapia/métodos , Cobre/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/terapia , Neoplasias/imunologia , Humanos , Modelos Animais de Doenças , Acroleína/análogos & derivados , Acroleína/farmacologia , Nanopartículas/química , Linhagem Celular Tumoral , Polietilenoglicóis/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA