Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neural Eng ; 16(1): 016024, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30524060

RESUMO

OBJECTIVE: Microwire and Utah-style neural recording arrays are the predominant devices used for cortical neural recording, but the implanted electrodes cause a significant adverse biological response and suffer from well-studied performance degradation. Recent work has demonstrated that carbon fiber electrodes do not elicit this same adverse response, but these existing designs are not practically scalable to hundreds or thousands of recording sites. We present technology that overcomes these issues while additionally providing fine electrode pitch for spatial oversampling. APPROACH: We present a 32-channel carbon fiber monofilament-based intracortical neural recording array fabricated through a combination of bulk silicon microfabrication processing and microassembly. This device represents the first truly two-dimensional carbon fiber neural recording array. The density, channel count, and size scale of this array are enabled by an out-of-plane microassembly technique in which individual fibers are inserted through metallized and isotropically conductive adhesive-filled holes in an oxide-passivated microfabricated silicon substrate. MAIN RESULTS: Five-micron diameter fibers are spaced at a pitch of 38 microns, four times denser than state of the art one-dimensional arrays. The fine diameter of the carbon fibers affords both minimal cross-section and nearly three orders of magnitude greater lateral compliance than standard tungsten microwires. Typical [Formula: see text] impedances are on the order of hundreds of kiloohms, and successful in vivo recording is demonstrated in the motor cortex of a rat. 22 total units are recorded on 20 channels, with unit SNR ranging from 1.4 to 8.0. SIGNIFICANCE: This is the highest density microwire-style electrode array to date, and this fabrication technique is scalable to a larger number of electrodes and allows for the potential future integration of microelectronics. Large-scale carbon fiber neural recording arrays are a promising technology for reducing the inflammatory response and increasing the information density, particularly in neural recording applications where microwire arrays are already used.


Assuntos
Potenciais de Ação/fisiologia , Fibra de Carbono/normas , Córtex Cerebral/fisiologia , Eletrodos Implantados/normas , Microeletrodos/normas , Fibra de Carbono/química , Humanos
2.
IEEE Trans Neural Syst Rehabil Eng ; 19(3): 307-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21292598

RESUMO

Cortical neural prostheses require chronically implanted small-area microelectrode arrays that simultaneously record and stimulate neural activity. It is necessary to develop new materials with low interface impedance and large charge transfer capacity for this application and we explore the use of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) for the same. We subjected PEDOT coated electrodes to voltage cycling between -0.6 and 0.8 V, 24 h continuous biphasic stimulation at 3 mC/cm² and accelerated aging for four weeks. Characterization was performed using cyclic voltammetry, electrochemical impedance spectroscopy, and voltage transient measurements. We found that PEDOT coated electrodes showed a charge injection limit 15 times higher than Platinum Iridium (PtIr) electrodes and electroplated Iridium Oxide (IrOx) electrodes when using constant current stimulation at zero voltage bias. In vivo chronic testing of microelectrode arrays implanted in rat cortex revealed that PEDOT coated electrodes show higher signal-to-noise recordings and superior charge injection compared to PtIr electrodes.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Estimulação Elétrica/instrumentação , Microeletrodos , Neurônios/fisiologia , Polímeros/química , Animais , Eletrodos , Eletrodos Implantados , Eletrônica , Feminino , Irídio/química , Próteses Neurais , Desenho de Prótese , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA