Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(4): 1428-1446, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33211093

RESUMO

As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates-namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose-methanol-choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases-we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.


Assuntos
Agaricales/genética , Genoma Fúngico , Lignina/metabolismo , Peroxidases/genética , Filogenia , Agaricales/enzimologia , Ecossistema , Família Multigênica , Peroxidases/metabolismo
2.
Environ Microbiol ; 18(12): 4710-4726, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27117896

RESUMO

Fungi interact with their environment by secreting proteins to obtain nutrients, elicit responses and modify their surroundings. Because the set of proteins secreted by a fungus is related to its lifestyle, it should be possible to use it as a tool to predict fungal lifestyle. To test this hypothesis, we bioinformatically identified 538 and 554 secretable proteins in the monokaryotic strains PC9 and PC15 of the white rot basidiomycete Pleurotus ostreatus. Functional annotation revealed unknown functions (37.2%), glycosyl hydrolases (26.5%) and redox enzymes (11.5%) as the main groups in the two strains. When these results were combined with RNA-seq analyses, we found that the relative importance of each group was different in different strains and culture conditions and the relevance of the unknown function proteins was enhanced. Only a few genes were actively expressed in a given culture condition in expanded multigene families, suggesting that family expansi on could increase adaptive opportunities rather than activity under a specific culture condition. Finally, we used the set of P. ostreatus secreted proteins as a query to search their counterparts in other fungal genomes and found that the secretome profiles cluster the tested basidiomycetes into lifestyle rather than phylogenetic groups.


Assuntos
Proteínas Fúngicas/metabolismo , Pleurotus/metabolismo , Genoma Fúngico , Lignina/metabolismo , Família Multigênica , Filogenia , Pleurotus/enzimologia
3.
Appl Environ Microbiol ; 81(12): 4120-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862220

RESUMO

Recently, the lignin-degrading basidiomycete Pleurotus ostreatus has become a widely used model organism for fungal genomic and transcriptomic analyses. The increasing interest in this species has led to an increasing number of studies analyzing the transcriptional regulation of multigene families that encode extracellular enzymes. Reverse transcription (RT) followed by real-time PCR is the most suitable technique for analyzing the expression of gene sets under multiple culture conditions. In this work, we tested the suitability of 13 candidate genes for their use as reference genes in P. ostreatus time course cultures for enzyme production. We applied three different statistical algorithms and obtained a combination of stable reference genes for optimal normalization of RT-quantitative PCR assays. This reference index can be used for future transcriptomic analyses and validation of transcriptome sequencing or microarray data. Moreover, we analyzed the expression patterns of a laccase and a manganese peroxidase (lacc10 and mnp3, respectively) in lignocellulose and glucose-based media using submerged, semisolid, and solid-state fermentation. By testing different normalization strategies, we demonstrate that the use of nonvalidated reference genes as internal controls leads to biased results and misinterpretations of the biological responses underlying expression changes.


Assuntos
Perfilação da Expressão Gênica , Genes Fúngicos , Pleurotus/enzimologia , Pleurotus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transcrição Reversa , Algoritmos , Meios de Cultura , Fermentação , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Glucose/metabolismo , Lacase/genética , Lignina/metabolismo , Peroxidases/genética
4.
Fungal Genet Biol ; 72: 150-161, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24560615

RESUMO

Pleurotus ostreatus is an important edible mushroom and a model lignin degrading organism, whose genome contains nine genes of ligninolytic peroxidases, characteristic of white-rot fungi. These genes encode six manganese peroxidase (MnP) and three versatile peroxidase (VP) isoenzymes. Using liquid chromatography coupled to tandem mass spectrometry, secretion of four of these peroxidase isoenzymes (VP1, VP2, MnP2 and MnP6) was confirmed when P. ostreatus grows in a lignocellulose medium at 25°C (three more isoenzymes were identified by only one unique peptide). Then, the effect of environmental parameters on the expression of the above nine genes was studied by reverse transcription-quantitative PCR by changing the incubation temperature and medium pH of P. ostreatus cultures pre-grown under the above conditions (using specific primers and two reference genes for result normalization). The cultures maintained at 25°C (without pH adjustment) provided the highest levels of peroxidase transcripts and the highest total activity on Mn(2+) (a substrate of both MnP and VP) and Reactive Black 5 (a VP specific substrate). The global analysis of the expression patterns divides peroxidase genes into three main groups according to the level of expression at optimal conditions (vp1/mnp3>vp2/vp3/mnp1/mnp2/mnp6>mnp4/mnp5). Decreasing or increasing the incubation temperature (to 10°C or 37°C) and adjusting the culture pH to acidic or alkaline conditions (pH 3 and 8) generally led to downregulation of most of the peroxidase genes (and decrease of the enzymatic activity), as shown when the transcription levels were referred to those found in the cultures maintained at the initial conditions. Temperature modification produced less dramatic effects than pH modification, with most genes being downregulated during the whole 10°C treatment, while many of them were alternatively upregulated (often 6h after the thermal shock) and downregulated (12h) at 37°C. Interestingly, mnp4 and mnp5 were the only peroxidase genes upregulated under alkaline pH conditions. The differences in the transcription levels of the peroxidase genes when the culture temperature and pH parameters were changed suggest an adaptive expression according to environmental conditions. Finally, the intracellular proteome was analyzed, under the same conditions used in the secretomic analysis, and the protein product of the highly-transcribed gene mnp3 was detected. Therefore, it was concluded that the absence of MnP3 from the secretome of the P. ostreatus lignocellulose cultures was related to impaired secretion.


Assuntos
Expressão Gênica , Lignina/metabolismo , Peroxidases/biossíntese , Pleurotus/enzimologia , Cromatografia Líquida , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Concentração de Íons de Hidrogênio , Peroxidases/genética , Pleurotus/efeitos dos fármacos , Pleurotus/genética , Pleurotus/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Temperatura
5.
Bioresour Technol ; 133: 142-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23425584

RESUMO

The purpose of this work was to explore the use of polluted water effluents from wheat straw using industries as inducers of lignocellulolytic enzymatic activities in cultures of white rot basidiomycetes. For this purpose, we studied the effect of a wheat straw water extract on the evolution of the laccase activity recovered from submerged cultures of Pleurotus ostreatus made in different media and under various culture conditions. Our results demonstrated an accumulative induction effect in all the cultures and conditions tested. This induction is parallel to changes in the laccase electrophoretic profiles recovered from the culture supernatants. The isoenzyme that appeared to be mainly responsible for the laccase activity under these conditions was laccase 10, as confirmed by sequencing the induced protein. These results support the idea of using wheat straw effluents as inducers in liquid cultures of P. ostreatus mycelia for the production of ligninolytic enzymatic cocktails.


Assuntos
Lacase/biossíntese , Pleurotus/enzimologia , Triticum/química , Resíduos/análise , Poluentes da Água/farmacologia , Sequência de Aminoácidos , Biomassa , Carboidratos/análise , Indução Enzimática/efeitos dos fármacos , Isoenzimas/metabolismo , Lacase/química , Lignina/metabolismo , Dados de Sequência Molecular , Peso Molecular , Fenóis/análise , Pleurotus/efeitos dos fármacos , Pleurotus/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA