Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(23): 9350-5, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23696673

RESUMO

Recognizing and quantifying specific biomolecules in aqueous samples are constantly needed in research and diagnostic laboratories. As the typical detection procedures are rather lengthy and involve the use of labeled secondary antibodies or other agents to provide a signal, efforts have been made over the last 10 y to develop alternative label-free methods that enable direct detection. We propose and demonstrate an extremely simple, low-cost, label-free biodetector based on measuring the intensity of light reflected by the interface between a fluid sample and an amorphous fluoropolymer substrate having a refractive index very close to that of water and hosting various antibodies immobilized in spots. Under these index-matching conditions, the amount of light reflected by the interface allows straightforward quantification of the amount of antigen binding to each spot. Using antibodies targeting heterologous immunoglobulins and antigens commonly used as markers for diagnoses of hepatitis B and HIV, we demonstrate the limit of detection of a few picograms per square millimeter of surface-bound molecules. We also show that direct and real-time access to the amount of binding molecules allows the precise extrapolation of adhesion rates, from which the concentrations of antigens in solution can be estimated down to fractions of nanograms per milliliter.


Assuntos
Antígenos/isolamento & purificação , Biomarcadores/metabolismo , Técnicas de Química Analítica/métodos , Plásticos/química , Água/química , Anticorpos/metabolismo , Antígenos/metabolismo , Infecções por HIV/diagnóstico , Hepatite B/diagnóstico , Humanos , Imunoensaio , Luz , Fenômenos Ópticos , Análise Serial de Proteínas
2.
Top Curr Chem ; 318: 225-79, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21826603

RESUMO

This chapter reviews the state-of-the-art in the study of molecular or colloidal systems whose mutual interactions are mediated by DNA molecules. In the last decade, the robust current knowledge of DNA interactions has enabled an impressive growth of self-assembled DNA-based structures that depend crucially on the properties of DNA-DNA interactions. In many cases, structures are built on design by exploiting the programmable selectivity of DNA interactions and the modularity of their strength. The study of DNA-based materials is definitely an emerging field in condensed matter physics, nanotechnology, and material science. This chapter will consider both systems that are entirely constructed by DNA and hybrid systems in which latex or metal colloidal particles are coated by DNA strands. We will confine our discussion to systems in which DNA-mediated interactions promote the formation of "phases," that is structures extending on length scales much larger than the building blocks. Their self-assembly typically involves a large number of interacting particles and often features hierarchical stages of structuring. Because of the possibility of fine-tuning the geometry and strength of the DNA-mediated interactions, these systems are characterized by a wide variety of patterns of self-assembly, ranging from amorphous, to liquid crystalline, to crystalline in one, two, or three dimensions.


Assuntos
Coloides/química , DNA/química , Cristais Líquidos/química , Nanopartículas Metálicas/química , Conformação de Ácido Nucleico , Óculos , Látex/química , Nanotecnologia/métodos , Propriedades de Superfície , Termodinâmica , Temperatura de Transição
3.
Biosens Bioelectron ; 74: 539-45, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26188676

RESUMO

Biosensing platforms that combine high sensitivity, operational simplicity and affordable costs find wide application in many fields, including human diagnostics, food and environmental monitoring. In this work, we introduce a label-free biosensing chip made of glass with a single anti-reflective layer of SiO2. This common and economic material coated by a multi-functional copolymer based on dimethylacrylamide enables the detection even in turbid media. The copolymer coating provides covalent immobilization of antibodies onto the surface and prevents the non-specific adsorption of analytes and matrix constituents. The specific capture of target compounds yields a local increase of surface reflectivity measured by a simple imaging system. Chip design and quantitative interpretation of the data are based on a theoretical optical model. This approach enables the multiplex detection of biomolecular interactions with state-of-the-art sensitivity and minimal instrumental complexity. The detection performance is demonstrated by characterizing the interaction between human growth hormone in solution and the corresponding antibodies immobilized on the sensing surface, both in buffer and human serum, obtaining a clear signal for concentrations as small as 2.8 ng/ml.


Assuntos
Técnicas Biossensoriais/instrumentação , Vidro/química , Hormônio do Crescimento Humano/sangue , Imunoensaio/instrumentação , Fotometria/instrumentação , Dióxido de Silício/química , Anticorpos/imunologia , Materiais Revestidos Biocompatíveis/síntese química , Desenho de Equipamento , Análise de Falha de Equipamento , Hormônio do Crescimento Humano/imunologia , Humanos , Luz , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Coloração e Rotulagem
4.
Nat Commun ; 2: 290, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21505446

RESUMO

Spatial scale invariance represents a remarkable feature of natural phenomena. A ubiquitous example is represented by miscible liquid phases undergoing diffusion. Theory and simulations predict that in the absence of gravity diffusion is characterized by long-ranged algebraic correlations. Experimental evidence of scale invariance generated by diffusion has been limited, because on Earth the development of long-range correlations is suppressed by gravity. Here we report experimental results obtained in microgravity during the flight of the FOTON M3 satellite. We find that during a diffusion process a dilute polymer solution exhibits scale-invariant concentration fluctuations with sizes ranging up to millimetres, and relaxation times as large as 1,000 s. The scale invariance is limited only by the finite size of the sample, in agreement with recent theoretical predictions. The presence of such fluctuations could possibly impact the growth of materials in microgravity.


Assuntos
Difusão , Fractais , Ausência de Peso , Análise de Fourier , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Polímeros/química , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA