Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 108(49): 19521-5, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-22106270

RESUMO

The ability to control the placement of individual protein molecules on surfaces could enable advances in a wide range of areas, from the development of nanoscale biomolecular devices to fundamental studies in cell biology. Such control, however, remains a challenge in nanobiotechnology due to the limitations of current lithographic techniques. Herein we report an approach that combines scanning probe block copolymer lithography with site-selective immobilization strategies to create arrays of proteins down to the single-molecule level with arbitrary pattern control. Scanning probe block copolymer lithography was used to synthesize individual sub-10-nm single crystal gold nanoparticles that can act as scaffolds for the adsorption of functionalized alkylthiol monolayers, which facilitate the immobilization of specific proteins. The number of protein molecules that adsorb onto the nanoparticles is dependent upon particle size; when the particle size approaches the dimensions of a protein molecule, each particle can support a single protein. This was demonstrated with both gold nanoparticle and quantum dot labeling coupled with transmission electron microscopy imaging experiments. The immobilized proteins remain bioactive, as evidenced by enzymatic assays and antigen-antibody binding experiments. Importantly, this approach to generate single-biomolecule arrays is, in principle, applicable to many parallelized cantilever and cantilever-free scanning probe molecular printing methods.


Assuntos
Proteínas Imobilizadas/análise , Polímeros/química , Análise Serial de Proteínas/métodos , Proteínas/análise , Cloretos/química , Ouro/química , Compostos de Ouro/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/ultraestrutura , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Sondas Moleculares/química , Nanotecnologia/métodos , Tamanho da Partícula , Proteínas/química , Proteínas/ultraestrutura , Pontos Quânticos , Reprodutibilidade dos Testes , Espectrometria por Raios X , Propriedades de Superfície
2.
Nano Lett ; 12(2): 1022-5, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22250864

RESUMO

We report the first method for synthesizing binary semiconductor materials by scanning probe block copolymer lithography (SPBCL) in desired locations on a surface. In this work, we utilize SPBCL to create polymer features containing a desired amount of Cd(2+), which is defined by the feature volume. When they are subsequently reacted in H(2)S in the vapor phase, a single CdS nanoparticle is formed in each block copolymer (BCP) feature. The CdS nanoparticles were shown to be both crystalline and luminescent. Importantly, the CdS nanoparticle sizes can be tuned since their diameters depend on the volume of the originally deposited BCP feature.


Assuntos
Compostos de Cádmio/química , Sondas Moleculares/química , Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Sulfetos/química , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
3.
Nano Lett ; 12(1): 264-8, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22168820

RESUMO

Block copolymers can be used to template large arrays of nanopatterns with periodicities equal to the characteristic spacing of the polymer. Here we demonstrate a technique capitalizing on the multilayered arrangement of cylindrical domains to effectively double the pattern density templated by a given polymer. By controlling the initial thickness of the film and the solvent annealing conditions, it was possible to reproducibly create density doubled lines by swelling the film with solvent until bilayers of horizontal cylinders were obtained. This process was also demonstrated to be compatible with graphoepitaxy.


Assuntos
Cristalização/métodos , Impressão Molecular/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Polímeros/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Gravidade Específica , Propriedades de Superfície
4.
J Am Chem Soc ; 134(1): 158-61, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22235989

RESUMO

The ability to observe intermediate structures as part of coarsening processes that lead to the formation of single nanoparticles (NPs) is important in gaining fundamental insight pertaining to nanostructure growth. Here, we use scanning probe block copolymer lithography (SPBCL) to create "nanoreactors" having attoliter volumes, which confine Au NP nucleation and growth to features having diameters <150 nm on a substrate. With this technique, one can use in situ TEM to directly observe and study NP coarsening and differentiate Ostwald ripening from coalescence processes. Importantly, the number of metal atoms that can engage in coarsening can be controlled with this technique, and TEM "snapshots" of particle growth can be taken. The size of the resulting nanostructures can be controlled in the 2-10 nm regime.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/métodos , Ouro/química , Polímeros/química , Impressão , Temperatura
5.
Nat Nanotechnol ; 5(9): 637-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20676088

RESUMO

Lithography techniques are currently being developed to fabricate nanoscale components for integrated circuits, medical diagnostics and optoelectronics. In conventional far-field optical lithography, lateral feature resolution is diffraction-limited. Approaches that overcome the diffraction limit have been developed, but these are difficult to implement or they preclude arbitrary pattern formation. Techniques based on near-field scanning optical microscopy can overcome the diffraction limit, but they suffer from inherently low throughput and restricted scan areas. Highly parallel two-dimensional, silicon-based, near-field scanning optical microscopy aperture arrays have been fabricated, but aligning a non-deformable aperture array to a large-area substrate with near-field proximity remains challenging. However, recent advances in lithographies based on scanning probe microscopy have made use of transparent two-dimensional arrays of pyramid-shaped elastomeric tips (or 'pens') for large-area, high-throughput patterning of ink molecules. Here, we report a massively parallel scanning probe microscopy-based approach that can generate arbitrary patterns by passing 400-nm light through nanoscopic apertures at each tip in the array. The technique, termed beam pen lithography, can toggle between near- and far-field distances, allowing both sub-diffraction limit (100 nm) and larger features to be generated.


Assuntos
Microscopia de Varredura por Sonda/instrumentação , Microscopia de Varredura por Sonda/métodos , Nanotecnologia/instrumentação , Nanoestruturas/química , Polímeros/química
6.
ACS Nano ; 2(3): 489-501, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19206575

RESUMO

Block copolymer thin films can be used as soft templates for a wide range of surfaces where large area patterns of nanoscale features are desired. The cylindrical domains of acid-sensitive, self-assembled monolayers of polystyrene-poly(2-vinylpyridine) block copolymers on silicon surfaces were utilized as structural elements for the production of parallel metal nanowires. Metal ion loading of the P2VP block with simple aqueous solutions of anionic metal complexes is accomplished via protonation of this basic block, rendering it cationic; electrostatic attraction leads to a high local concentration of metal complexes within the protonated P2VP domain. A subsequent brief plasma treatment simultaneously removes the polymer and produces metallic nanowires. The morphology of the patterns can modulated by controlling solution concentration, deposition time, and molecular weight of the block copolymers, as well as other factors. Horizontal metallic nanoarrays can be aligned on e-beam lithographically defined silicon substrates within different shapes, via graphoepitaxy. This method is highly versatile as the procedures to manipulate nanowire composition, dimension, spacing, and orientation are straightforward and based upon efficient aqueous inorganic chemistry.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Platina/química , Poliestirenos/química , Polivinil/química , Piridinas/química , Temperatura Alta , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
7.
Langmuir ; 20(25): 10919-27, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15568841

RESUMO

Poly(methyl methacrylate) (PMMA) has been modified via a dc pulsed oxygen plasma for different treatment times. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), optical profilometer, zeta potential, and advancing contact angle measurements. The measured advancing contact angles of water decreased considerably as a function of discharge. Several oxygen-based functionalities (carbonyl, carboxyl, carbonate, etc.) were detected by XPS, while zeta potential measurements confirmed an increase in negative charge for the treated PMMA surface. Evaluating the correlation between the concentration of polar chemical species and zeta potential, we found that increase in surface hydrophilicity results from the coeffect due to incorporation of oxygen functional groups and creation of charge states. The electrical double layer (EDL) effect was also considered in contact angle interpretation by introducing an additional surface tension term into Young's equation. We also found that EDL contribution to the solid-liquid interfacial tension is negligible and can be safely ignored for the systems considered here.


Assuntos
Oxigênio/química , Polimetil Metacrilato/química , Estrutura Molecular , Tensão Superficial , Fatores de Tempo , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA