Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 69(6): 1231-1241, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30142426

RESUMO

BACKGROUND & AIMS: Several steps in the HBV life cycle remain obscure because of a lack of robust in vitro infection models. These steps include particle entry, formation and maintenance of covalently closed circular (ccc) DNA, kinetics of gene expression and viral transmission routes. This study aimed to investigate infection kinetics and cccDNA dynamics during long-term culture. METHODS: We selected a highly permissive HepG2-NTCP-K7 cell clone engineered to express sodium taurocholate co-transporting polypeptide (NTCP) that supports the full HBV life cycle. We characterized the replication kinetics and dynamics of HBV over six weeks of infection. RESULTS: HBV infection kinetics showed a slow infection process. Nuclear cccDNA was only detected 24 h post-infection and increased until 3 days post-infection (dpi). Viral RNAs increased from 3 dpi reaching a plateau at 6 dpi. HBV protein levels followed similar kinetics with HBx levels reaching a plateau first. cccDNA levels modestly increased throughout the 45-day study period with 5-12 copies per infected cell. Newly produced relaxed circular DNA within capsids was reimported into the nucleus and replenished the cccDNA pool. In addition to intracellular recycling of HBV genomes, secondary de novo infection events resulted in cccDNA formation. Inhibition of relaxed circular DNA formation by nucleoside analogue treatment of infected cells enabled us to measure cccDNA dynamics. HBV cccDNA decayed slowly with a half-life of about 40 days. CONCLUSIONS: After a slow infection process, HBV maintains a stable cccDNA pool by intracellular recycling of HBV genomes and via secondary infection. Our results provide important insights into the dynamics of HBV infection and support the future design and evaluation of new antiviral agents. LAY SUMMARY: Using a unique hepatocellular model system designed to support viral growth, we demonstrate that hepatitis B virus (HBV) has remarkably slow infection kinetics. Establishment of the episomal transcription template and the persistent form of the virus, so called covalently closed circular DNA, as well as viral transcription and protein expression all take a long time. Once established, HBV maintains a stable pool of covalently closed circular DNA via intracellular recycling of HBV genomes and through infection of naïve cells by newly formed virions.


Assuntos
Coinfecção/virologia , DNA Circular/metabolismo , DNA Viral/metabolismo , Genoma Viral/fisiologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatite B/virologia , Dimetil Sulfóxido/metabolismo , Meia-Vida , Células Hep G2 , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Polietilenoglicóis/metabolismo , RNA Viral/metabolismo , Simportadores/metabolismo , Replicação Viral
2.
Int Ophthalmol ; 33(6): 665-70, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23529791

RESUMO

Ocular surface injury causes serious vision-related problems especially when limbal stem cells are affected. Treatment lies in the transplantation of viable donor cells. Various substrates are used for the cultivation of limbal epithelial stem cells. In the present study, viability and proliferation of ex vivo cultured limbal epithelial stem cells were examined on a variety of substrates like collagen type IV, direct plastic Petri plate, intact amniotic membrane and denuded amniotic membrane. Viability and proliferation of cells were examined by colorimetric assay and [(3)H]-thymidine incorporation study. Furthermore, matrix metalloproteinase is known to be a key regulator in stem cell migration and proliferation. This enzyme activity was studied by gelatinolytic zymography. It was found from this study that although human limbal epithelial stem cells could be cultivated on different substrates such as collagen type IV, direct plastic Petri plate, intact amniotic membrane and denuded amniotic membrane, maximum growth and proliferation was observed when cultured on intact amniotic membrane. The number of patients suffering from limbal epithelial stem cell deficiency is large compared to donor tissues available for transplantation. Hence, increased cell viability and proliferation is required to serve more patients.


Assuntos
Técnicas de Cultura de Células/métodos , Epitélio Corneano/citologia , Limbo da Córnea/citologia , Células-Tronco/citologia , Âmnio/citologia , Proliferação de Células , Sobrevivência Celular , Colágeno Tipo V , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Plásticos , Células-Tronco/enzimologia
3.
F1000Res ; 12: 129, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396049

RESUMO

Background: To compare the surface roughness and microhardness of Ceram.x® SphereTEC™ one and Filtek Z350 XT after in-office bleaching with Pola office. Methods: Twenty samples each of (10 mm diameter and 2 mm height) Ceram.x® SphereTEC™ one and Filtek Z350 XT were prepared. The samples were subjected to three bleaching sessions with 35% hydrogen peroxide (Pola office) with a seven-day interval between each session. Surface roughness and microhardness of the prepared samples prior to and after the bleaching regimen were measured using a profilometer and Vickers hardness tester, respectively. Results: A significant reduction (p <0.001) in the surface hardness of Filtek Z350 XT from 27.67 ± 2.10 to 17.83 ± 1.36 Vickers hardness number (VHN) was observed after the bleaching whereas no significant reduction in surface hardness was observed with Ceram.x® SphereTEC™ one. The adjusted mean (estimated marginal mean) microhardness after bleaching for Ceram.x ® SphereTEC™ one (35.79 ± 1.45) was significantly higher than Filtek Z350 XT (19.54 ± 1.45) (p < 0.001). However, in-office bleaching of these materials did not significantly alter their surface roughness. Conclusions: In office-bleaching with 35% hydrogen peroxide can reduce the microhardness of nanofilled composite. However, the surface roughness was not influenced by the bleaching procedure in both nanohybrid and nanofilled composite resin materials.


Assuntos
Clareadores , Peróxido de Hidrogênio , Resinas Compostas
4.
J Appl Toxicol ; 31(7): 618-25, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21154881

RESUMO

A significant level of reactive oxygen species generation was observed in sodium fluoride (NaF) treated mouse bone marrow cells (BMCs). Reduced glutathione (GSH) as a free radical scavenger could be an important determining factor in F-induced genotoxicity. We therefore attempted to monitor GSH to understand the mechanism of NaF-induced genotoxicity. NaF was injected intra-peritoneally in normal, buthionine sulfoximine (BSO) or N-acetyl-L-cysteine (NAC) treated mice (n = 5). After 13 h of NaF-treatment BMCs were collected to harvest them at the same divisional cycle and processed for analysis of cell cycle, induction of apoptosis and chromosomal aberrations (CAs). Level of GSH was also measured concomitantly. NaF induced significant CAs in all treatment groups except at 2.5 mg NaF kg(-1) body weight. BSO-treatment alone induced significantly high frequency of CAs. BSO treatment prior to injection of 2.5-7.5 mg NaF kg(-1) b.w. was found to increase the frequency of CAs, significantly when compared with the positive control group, but the level was not significant in case of higher doses of NaF treatment (15 and 30 mg kg(-1) b.w.). NaF-treated cells also showed a higher population of Annexin-V positive cells. NAC pre-treatment significantly reduced the extent of NaF-induced CAs, which clearly indicates the involvement of GSH in the NaF response. However, further study is warranted to evaluate the low synergistic effect of BSO on higher doses of NaF-induced CAs.


Assuntos
Acetilcisteína/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Dano ao DNA/efeitos dos fármacos , Fluoreto de Sódio/toxicidade , Animais , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Células da Medula Óssea/química , Ciclo Celular/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glutationa/análise , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo
5.
Biol Trace Elem Res ; 199(8): 3035-3044, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33057951

RESUMO

Fluoride (F) is an essential trace element, but chronic exposure beyond the permissible limit (1.5 ppm) effectuates dental and skeletal fluorosis. Although 200 million people across the world are suffering from toxic manifestations of F, till now proper treatment is not available. In this study, we assessed the effectiveness of calcium and vitamin D supplementation for alleviation of fluorosis. Swiss albino mice were divided into 6 groups; group I-control group (received drinking water ˂ 0.5 ppm F; within the permissible limit), group II-treated with 15 ppm of sodium fluoride (NaF) for 4 months, group III-treated with 15 ppm of NaF for 8 months through drinking water. Group IV-orally treated with 15 ppm NaF for 4 months, thereafter received only drinking water for next 4 months, group V-orally treated with 15 ppm NaF for 4 months, thereafter received drinking water supplemented with calcium and vitamin D (2.5-g calcium kg-1 diet and 1000 IU vitamin D kg-1 diet) for next 4 months, and group VI was treated with 15 ppm of NaF through drinking water as well as supplemented with calcium and vitamin D for 4 months. NaF treatment caused dental fluorosis, skeletal fluorosis, and alteration of bone's metal profile. Substitution of NaF-containing water with normal drinking water reduced the severity of fluorosis but supplementation of calcium and vitamin D effectively alleviated dental and skeletal fluorosis, reduced F deposition, and retained elemental homeostasis of the bone. Our findings strongly support that calcium and vitamin D act as redeemer of fluorosis. Graphical Abstract.


Assuntos
Fluorose Dentária , Animais , Cálcio , Suplementos Nutricionais , Fluoretos , Homeostase , Camundongos , Vitamina D
6.
Free Radic Res ; 51(1): 47-63, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28074659

RESUMO

The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50 mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10 Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.


Assuntos
Ácidos Cumáricos/uso terapêutico , Sequestradores de Radicais Livres/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Protetores contra Radiação/uso terapêutico , Animais , Compostos de Bifenilo/química , Catalase/metabolismo , Resinas Compostas , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Avaliação Pré-Clínica de Medicamentos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Raios gama , Masculino , Camundongos , Oxirredução , Picratos/química , Plasmídeos/química , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Transdução de Sinais , Superóxido Dismutase/metabolismo , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA