Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(30): 25154-25165, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979019

RESUMO

Fluorescent nanoparticles built from aggregation-induced emission-active organic molecules (AIE-FONs) have emerged as powerful tools in life science research for in vivo bioimaging of organs, biosensing, and therapy. However, the practical use of such biotracers has been hindered owing to the difficulty of designing bright nanoparticles with controlled dimensions (typically below 200 nm), narrow size dispersity and long shelf stability. In this article, we present a very simple yet effective approach to produce monodisperse sub-200 nm AIE fluorescent organic solid dispersions with excellent redispersibility and colloidal stability in aqueous medium by combination of nanoprecipitation and freeze-drying procedures. By selecting polymer additives that simultaneously act as stabilizers, promoters of amorphous-crystalline transition, and functionalization/cross-linking platforms, we demonstrate a straightforward access to stable nanocrystalline FONs that exhibit significantly higher brightness than their amorphous precursors and constitute efficient probes for in vivo imaging of the normal and tumor vasculature. FONs design principles reported here are universal, applicable to a range of fluorophores with different chemical structures and crystallization abilities, and are suitable for high-throughput production and manufacturing of functional imaging probes.


Assuntos
Nanopartículas , Corantes Fluorescentes , Polímeros
2.
Biochimie ; 93(1): 101-12, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20346388

RESUMO

In nature, interfacial molecular recognition and chirality are of fundamental significance for the construction of biological assemblies. Lipid monolayers at liquid interface can be used as biomimetic models for studying molecular interactions in such assemblies. In this article, we will focus on the use of Langmuir monolayers for studying self-organization and insertion properties of several neoglycolipids. Two types of glycolipids have been considered, one in the context of the analysis of glycoconjugates of biological relevance, and one dealing with the ability of some glycoprobes to insert into a monolayer in relation with their efficiency for serving as membrane imaging systems.


Assuntos
Galactosilceramidas , Membranas Artificiais , Modelos Moleculares , Galactosilceramidas/química , Estrutura Molecular , Análise Espectral , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA