Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7539, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985765

RESUMO

The rapid diagnosis of respiratory virus infection through breath and blow remains challenging. Here we develop a wireless, battery-free, multifunctional pathogenic infection diagnosis system (PIDS) for diagnosing SARS-CoV-2 infection and symptom severity by blow and breath within 110 s and 350 s, respectively. The accuracies reach to 100% and 92% for evaluating the infection and symptom severity of 42 participants, respectively. PIDS realizes simultaneous gaseous sample collection, biomarker identification, abnormal physical signs recording and machine learning analysis. We transform PIDS into other miniaturized wearable or portable electronic platforms that may widen the diagnostic modes at home, outdoors and public places. Collectively, we demonstrate a general-purpose technology for rapidly diagnosing respiratory pathogenic infection by breath and blow, alleviating the technical bottleneck of saliva and nasopharyngeal secretions. PIDS may serve as a complementary diagnostic tool for other point-of-care techniques and guide the symptomatic treatment of viral infections.


Assuntos
Líquidos Corporais , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Manejo de Espécimes , Saliva
2.
J Mater Chem B ; 8(25): 5441-5450, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32555786

RESUMO

Bio-sourced hydrogels are attractive materials for diagnosing, repairing and improving the function of human tissues and organs. However, their mechanical strength decreases with an increase in water content. Furthermore, it is challenging to mold these hydrogels with high precision, which significantly limits their applications. Herein, we modified a biocompatible and biodegradable material, hyaluronic acid, with methacrylic anhydride and then cured it with a four-arm star structure cross-linking agent under ultraviolet light. The hyaluronic acid hydrogel was finally cured within 15 s with an adjustable cross-linking degree. The results demonstrated that the developed gel maintained good mechanical strength with a water content of 90%, while achieving micropatterns at a precision of 20 µm. The biological experiments showed that it could effectively promote the release of vascular endothelial growth factor (VEGF), which contributed to promoting cell growth, and has favorable biocompatibility. Overall, this hyaluronic acid hydrogel is a promising biomedical material with high forming accuracy, excellent mechanical properties, and favorable biocompatibility, which indicate its potential value in a variety of tissue engineering and biomedical applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Luz , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Ácido Hialurônico/química , Hidrogéis/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Engenharia Tecidual
3.
Trends Biotechnol ; 37(4): 428-441, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30470548

RESUMO

Zinc has been described as the 'calcium of the twenty-first century'. Zinc-based degradable biomaterials have recently emerged thanks to their intrinsic physiological relevance, biocompatibility, biodegradability, and pro-regeneration properties. Zinc-based biomaterials mainly include: metallic zinc alloys, zinc ceramic nanomaterials, and zinc metal-organic frameworks (MOFs). Metallic zinc implants degrade at a desirable rate, matching the healing pace of local tissues, and stimulating remodeling and formation of new tissues. Zinc ceramic nanomaterials are also beneficial for tissue engineering and therapy thanks to their nanostructures and antibacterial properties. MOFs have large surface areas and are easily functionalized, making them ideal for drug delivery and cancer therapy. This review highlights recent developments in zinc-based biomaterials, discusses obstacles to overcome, and pinpoints directions for future research.


Assuntos
Materiais Biocompatíveis/farmacologia , Regeneração/efeitos dos fármacos , Medicina Regenerativa/métodos , Oligoelementos/farmacologia , Zinco/farmacologia
4.
Biosens Bioelectron ; 122: 189-204, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30265969

RESUMO

Patchable devices that interface with the skin across a wide range of size scales, from cellular level down to molecular level, become increasingly attractive in biomedical research. These devices hold the potential for diagnostic and therapeutic functions with exceptional spatiotemporal precision, continuity, and convenience. Further, they afford new opportunities to integrate cloud-based technology and artificial intelligence for a smarter healthcare system. This article reviews recent advances in materials design and assembly techniques for fabricating various patchable devices, with focuses on electrical, thermal, mechanical, and chemical biosensors as well as transdermal gene and drug delivery platforms. A concluding discussion provides perspectives for future developments and outlooks in clinical applications.


Assuntos
Técnicas Biossensoriais/métodos , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Adesivo Transdérmico , Dispositivos Eletrônicos Vestíveis , Administração Cutânea , Animais , Materiais Biocompatíveis/química , Técnicas Biossensoriais/instrumentação , Sistemas de Liberação de Medicamentos/instrumentação , Desenho de Equipamento , Humanos , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA