Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163714

RESUMO

Owing to a higher demand for glucosamine (GlcN) in metabolic processes in tumor cells than in normal cells (i.e., GlcN effects), tumor imaging in magnetic resonance imaging (MRI) can be highly improved using GlcN-conjugated MRI contrast agents. Here, GlcN was conjugated with polyacrylic acid (PAA)-coated ultrasmall gadolinium oxide nanoparticles (UGONs) (davg = 1.76 nm). Higher positive (brighter or T1) contrast enhancements at various organs including tumor site were observed in human brain glioma (U87MG) tumor-bearing mice after the intravenous injection of GlcN-PAA-UGONs into their tail veins, compared with those obtained with PAA-UGONs as control, which were rapidly excreted through the bladder. Importantly, the contrast enhancements of the GlcN-PAA-UGONs with respect to those of the PAA-UGONs were the highest in the tumor site owing to GlcN effects. These results demonstrated that GlcN-PAA-UGONs can serve as excellent T1 MRI contrast agents in tumor imaging via GlcN effects.


Assuntos
Nanopartículas , Neoplasias , Resinas Acrílicas , Animais , Meios de Contraste , Gadolínio , Glucosamina , Imageamento por Ressonância Magnética/métodos , Camundongos
2.
Biochem Biophys Res Commun ; 568: 23-29, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34174538

RESUMO

Gadolinium neutron capture therapy (GdNCT) is a form of binary radiotherapy. It utilizes nuclear reactions that occur when gadolinium-157 is irradiated with thermal neutrons, producing high-energy γ-rays and Auger electrons. Herein, we evaluate the potential of GdNCT for cancer treatment using PEGylated liposome incorporated with an FDA-approved MRI contrast agent. The clinical gadolinium complex (Gadovist®) was successfully encapsulated inside the aqueous core of PEGylated liposomes by repeated freeze and thaw cycling. At a concentration of 152 µM Gd, the Gd-liposome showed high cytotoxicity upon thermal-neutron irradiation. In animal experiments, when a CT26 tumor model was administered with Gd-liposomes (19 mg 157Gd per kg) followed by 20-min irradiation of thermal neutron at a flux of 1.94 × 104 cm-2 s-1, tumor growth was suppressed by 43%, compared to that in the control group, on the 23rd day of post-irradiation. After two-cycle GdNCT treatment at a 10-day interval, tumor growth was more efficiently retarded. On the 31st day after irradiation, the weight of the excised tumor in the GdNCT group (38 mg 157Gd per kg per injection) was only 30% of that of the control group. These results demonstrate the potential of GdNCT using PEGylated liposomes containing MRI contrast agents in cancer treatment.


Assuntos
Gadolínio/administração & dosagem , Isótopos/administração & dosagem , Lipossomos/química , Neoplasias/radioterapia , Terapia por Captura de Nêutron , Animais , Linhagem Celular Tumoral , Feminino , Gadolínio/uso terapêutico , Humanos , Isótopos/uso terapêutico , Camundongos Endogâmicos BALB C , Terapia por Captura de Nêutron/métodos , Polietilenoglicóis/química
3.
Biochem Biophys Res Commun ; 522(3): 669-675, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31787237

RESUMO

Boron neutron capture therapy (BNCT) is a binary radiotherapy based on nuclear reactions that occur when boron-10 is irradiated with neutrons, which result in the ejection of high-energy alpha particles. Successful BNCT requires the efficient delivery of a boron-containing compound to effect high concentrations in tumor cells while minimizing uptake in normal tissues. In this study, PEGylated liposomes were employed as boron carriers to maximize delivery to tumors and minimize uptake in the reticuloendothelial system (RES). The water-soluble potassium salt of nido-7,8-carborane, nido-carborane, was chosen as the boron source due to its high boron content per molecule. Nido-carborane was encapsulated in the aqueous cores of PEGylated liposomes by hydrating thin lipid films. Repeated freezing and thawing increased nido-carborane loading by up to 47.5 ± 3.1%. The average hydrodynamic diameter of the prepared boronated liposomes was determined to be 114.5 ± 28 nm through dynamic light scattering (DLS) measurement. Globular liposomes approximately 100 nm in diameter were clearly visible in transmission electron microscope (TEM) images. The viability of tumor cells following BNCT with 70 µM nido-carborane was reduced to 17.1% compared to irradiated control cells, which did not contain boronated liposomes. Confocal microscopy revealed that fluorescently labeled liposomes injected into the tail veins of mice were deeply and evenly distributed in tumor tissues and localized in the cytoplasm of tumor cells. When mice were properly shielded with a 12 mm-thick polyethylene board during in-vivo irradiation at a thermal neutron flux of 1.94 × 104/cm2·sec, almost complete tumor suppression was achieved in tumor models injected with boronated liposomes (21.0 mg 10B/kg). Two BNCT cycles spaced 10 days apart further enhanced the therapeutic anti-tumor effect, even when the dose was lowered to 10.5 mg 10B/kg. No notable weight loss was observed in the tumor models during the BNCT study.


Assuntos
Compostos de Boro/administração & dosagem , Terapia por Captura de Nêutron de Boro , Boro/administração & dosagem , Isótopos/administração & dosagem , Neoplasias/radioterapia , Animais , Boro/uso terapêutico , Compostos de Boro/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Isótopos/uso terapêutico , Lipossomos/química , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química
4.
Molecules ; 25(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150823

RESUMO

The study of ultra-small paramagnetic gadolinium oxide (Gd2O3) nanoparticles (NPs) as in vivo positive (T1) magnetic resonance imaging (MRI) contrast agents is one of the most attractive fields in nanomedicine. The performance of the Gd2O3 NP imaging agents depends on the surface-coating materials. In this study, poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) was used as a surface-coating polymer. The PMVEMA-coated paramagnetic ultra-small Gd2O3 NPs with an average particle diameter of 1.9 nm were synthesized using the one-pot polyol method. They exhibited excellent colloidal stability in water and good biocompatibility. They also showed a very high longitudinal water proton spin relaxivity (r1) value of 36.2 s-1mM-1 (r2/r1 = 2.0; r2 = transverse water proton spin relaxivity) under a 3.0 tesla MR field which is approximately 10 times higher than the r1 values of commercial molecular contrast agents. High positive contrast enhancements were observed in in vivo T1 MR images after intravenous administration of the NP solution sample, demonstrating its potential as a T1 MRI contrast agent.


Assuntos
Materiais Revestidos Biocompatíveis , Gadolínio , Imageamento por Ressonância Magnética , Anidridos Maleicos , Nanopartículas Metálicas , Polivinil , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Fenômenos Químicos , Materiais Revestidos Biocompatíveis/química , Meios de Contraste , Gadolínio/química , Imageamento por Ressonância Magnética/métodos , Anidridos Maleicos/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Estrutura Molecular , Tamanho da Partícula , Polivinil/química , Razão Sinal-Ruído , Análise Espectral
5.
J Nanosci Nanotechnol ; 13(11): 7214-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245232

RESUMO

The water-soluble and biocompatible D-glucuronic acid coated Eu(OH)3 nanorods (average thickness x average length = 9.0 x 118.3 nm) have been prepared in one-pot synthesis. The D-glucuronic acid coated Eu(OH)3 nanorods showed a strong fluorescence at approximately 600 nm with a narrow emission band width. A cytotoxicity test by using DU145 cells showed that D-glucuronic acid coated Eu(OH)3 nanorods are not toxic up to 100 microM, making them a promising candidate for biomedical applications such as fluorescent imaging. The minimum Eu concentration needed for a conventional confocal imaging was estimated to be approximately 0.1 mM. Therefore, D-glucuronic acid coated Eu(OH)3 nanorods can be applied to fluorescent imaging. However, a very tiny magnetization of approximately 1.2 emu/g at room temperature and at an applied field of 5 tesla was observed. As a result, very small r1 and r2 water proton relaxivities were estimated, implying that surface coated Eu(OH)3 nanorods are not sufficient for MRI contrast agents.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Hidróxidos/toxicidade , Imageamento por Ressonância Magnética/métodos , Nanopartículas Metálicas/toxicidade , Nanotubos/toxicidade , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/toxicidade , Meios de Contraste/síntese química , Meios de Contraste/toxicidade , Európio , Humanos , Hidróxidos/síntese química , Teste de Materiais , Nanopartículas Metálicas/química , Nanotubos/química
6.
J Nanosci Nanotechnol ; 12(7): 5132-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966533

RESUMO

Gold-coated iron oxide (Fe3O4) nanoparticles were synthesized for use as a T2 contrast agent in magnetic resonance imaging (MRI). The coated nanoparticles were spherical in shape with an average diameter of 20 nm. The gold shell was about 2 nm thick. The bonding status of the gold on the nanoparticle surfaces was checked using a Fourier transform infrared spectrometer (FTIR). The FTIR spectra confirmed the attachment of homocysteine, in the form of thiolates, to the Au shell of the Au-Fe3O4 nanoparticles. The relaxivity ratio, R2/R1, for the coated nanoparticles was 3-fold higher than that of a commercial contrast agent, Resovist, which showed the potential for their use as a T2 contrast agent with high efficacy. In animal experiments, the presence of the nanoparticles in rat liver resulted in a 71% decrease in signal intensity in T2-weighted MR images, indicating that our gold-coated iron oxide nanoparticles are suitable for use as a T2 contrast agent in MRI.


Assuntos
Materiais Revestidos Biocompatíveis , Ouro , Fígado/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita , Animais , Materiais Revestidos Biocompatíveis/química , Meios de Contraste/síntese química , Ouro/química , Nanopartículas de Magnetita/química , Teste de Materiais , Ratos
7.
Sci Rep ; 12(1): 13360, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922534

RESUMO

While boron neutron capture therapy (BNCT) depends primarily on the short flight range of the alpha particles emitted by the boron neutron capture reaction, gadolinium neutron capture therapy (GdNCT) mainly relies on gamma rays and Auger electrons released by the gadolinium neutron capture reaction. BNCT and GdNCT can be complementary in tumor therapy. Here, we studied the combined effects of BNCT and GdNCT when boron and gadolinium compounds were co-injected, followed by thermal neutron irradiation, and compared these effects with those of the single therapies. In cytotoxicity studies, some additive effects (32‒43%) were observed when CT26 cells were treated with both boron- and gadolinium-encapsulated PEGylated liposomes (B- and Gd-liposomes) compared to the single treatments. The tumor-suppressive effect was greater when BNCT was followed by GdNCT at an interval of 10 days rather than vice versa. However, tumor suppression with co-injection of B- and Gd-liposomes into tumor-bearing mice followed by neutron beam irradiation was comparable to that observed with Gd-liposome-only treatment but lower than B-liposome-only injection. No additive effect was observed with the combination of BNCT and GdNCT, which could be due to the shielding effect of gadolinium against thermal neutrons because of its overwhelmingly large thermal neutron cross section.


Assuntos
Neoplasias , Terapia por Captura de Nêutron , Animais , Boro , Compostos de Boro , Modelos Animais de Doenças , Gadolínio , Lipossomos , Camundongos
8.
Mini Rev Med Chem ; 20(17): 1767-1780, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32496986

RESUMO

Imaging agents are crucial in diagnosing diseases. Ultrasmall lanthanide oxide (Ln2O3) nanoparticles (NPs) (Ln = Eu, Gd, and Dy) are promising materials as high-performance imaging agents because of their excellent magnetic, optical, and X-ray attenuation properties which can be applied as magnetic resonance imaging (MRI), fluorescence imaging (FI), and X-ray computed tomography (CT) agents, respectively. Ultrasmall Ln2O3 NPs (Ln = Eu, Gd, and Dy) are reviewed here. The reviewed topics include polyol synthesis, characterization, properties, and biomedical imaging applications of ultrasmall Ln2O3 NPs. Recently published papers were used as bibliographic databases. A polyol method is a simple and efficient one-pot synthesis for preparing ultrasmall Ln2O3 NPs. Ligand-coated ultrasmall Ln2O3 NPs have good colloidal stability, biocompatibility, and renal excretion ability suitable for in vivo imaging applications. Ultrasmall Eu2O3 NPs display photoluminescence in the red region suitable for use as FI agents. Ultrasmall Gd2O3 NPs have r1 values higher than those of commercial molecular contrast agents and r2/r1 ratios close to 1, which make them eligible for use as T1 MRI contrast agents. Ultrasmall Dy2O3 NPs exhibit high r2 and negligible r1 values, which make them suitable for use as T2 MRI contrast agents. All ultrasmall Ln2O3 NPs have high X-ray attenuation powers which make them suitable for use as CT contrast agents. Unmixed, mixed, or doped ultrasmall Ln2O3 NPs with different Ln are extremely useful for in vivo imaging applications in MRI, CT, FI, MRI-CT, MRI-FI, CT-FI, and MRI-CT-FI.


Assuntos
Disprósio/química , Európio/química , Gadolínio/química , Nanopartículas Metálicas/química , Polímeros/química , Processamento de Imagem Assistida por Computador
9.
Colloids Surf B Biointerfaces ; 122: 752-759, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25194592

RESUMO

The development of iron oxide nanoparticles (IONPs) with enhanced r2 relaxivity is important for achieving greater sensitivity in in vivo magnetic resonance (MR) imaging. In this study, it was considered that polyethyleneimine (PEI) could play a role in varying the particle and cluster sizes in IONP synthesis, leading to different r2 relaxivities. To demonstrate this, superparamagnetic IONPs were synthesised in the presence of NH4OH and PEI using a co-precipitation method. PEI acted as an active stabiliser during IONP synthesis, and therefore the particle size, hydrodynamic cluster size, coating layer thickness, saturation magnetisation, and r2 relaxivity were all strongly influenced by the PEI concentration. Monodispersed IONPs with a mean hydrodynamic cluster size of 14.4nm were synthesised at a PEI concentration of 0.05wt% and in this case, the r2 relaxivity was increased up to 227.6mM(-1)s(-1). This confirmed the viability of PEI-mediated synthesis as a means of controlling the particle/cluster size and enhancing the r2 relaxivity. The PEI-IONPs exhibited no significant cytotoxicity up to 132ppm. Rapid and strong uptake of PEI-IONPs was detected in rat liver by in vivo MR imaging. The superparamagnetic PEI-IONPs prepared in this study are considered to be sufficiently sensitive for use as MR imaging contrast agents, which can be used as parent particles for further functional modification.


Assuntos
Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Polietilenoimina/química , Animais , Compostos Férricos/síntese química , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA