Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2216543120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487096

RESUMO

Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lignina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fenótipo , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol ; 189(4): 2015-2028, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522042

RESUMO

Lignin contributes substantially to the recalcitrance of biomass toward saccharification. To circumvent this problem, researchers have genetically altered lignin, although, in a number of cases, these efforts have resulted in an undesirable yield penalty. Recent findings have shown that by knocking out two subunits (MED5A and MED5B) of the transcriptional regulatory complex Mediator, the stunted growth phenotype of mutants in p-coumaroyl shikimate 3'-hydroxylase, reduced epidermal fluorescence 8-1 (ref8-1), can be alleviated. Furthermore, these plants synthesize a lignin polymer almost entirely derived from p-coumaryl alcohol. Plants deficient in cinnamyl alcohol dehydrogenase (CAD) are notable in that they primarily incorporate coniferaldehyde and sinapaldehyde into their lignin. We tested the hypothesis that by stacking mutations in the genes encoding for the CAD paralogs C and D on an Arabidopsis (Arabidopsis thaliana) med5a/5b ref8-1 genetic background, the biosynthesis of p-coumaryl alcohol would be blocked, making p-coumaraldehyde available for polymerization into a novel kind of lignin. The med5a/5b ref8-1 cadc cadd plants are viable, but lignin analysis demonstrated that they continue to synthesize p-hydroxyphenyl lignin despite being mutated for the CADs typically considered to be required for monolignol biosynthesis. In addition, enzyme activity tests showed that even in the absence of CADC and CADD, there is high CAD activity in stems. We tested the potential involvement of other CADs in p-coumaraldehyde biosynthesis in the quintuple mutant by mutating them using the CRISPR/Cas9 system. Lignin analysis demonstrated that the resulting hextuple mutant plants continue to deposit p-coumaryl alcohol-derived lignin, demonstrating a route for the synthesis of p-hydroxyphenyl lignin in Arabidopsis independent of four CAD isoforms.


Assuntos
Arabidopsis , Oxirredutases do Álcool/genética , Lignina , Plantas Geneticamente Modificadas
3.
Plant Physiol ; 190(4): 2828-2846, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35880844

RESUMO

Lignin, one of the most abundant polymers in plants, is derived from the phenylpropanoid pathway, which also gives rise to an array of metabolites that are essential for plant fitness. Genetic engineering of lignification can cause drastic changes in transcription and metabolite accumulation with or without an accompanying development phenotype. To understand the impact of lignin perturbation, we analyzed transcriptome and metabolite data from the rapidly lignifying stem tissue in 13 selected phenylpropanoid mutants and wild-type Arabidopsis (Arabidopsis thaliana). Our dataset contains 20,974 expressed genes, of which over 26% had altered transcript levels in at least one mutant, and 18 targeted metabolites, all of which displayed altered accumulation in at least one mutant. We found that lignin biosynthesis and phenylalanine supply via the shikimate pathway are tightly co-regulated at the transcriptional level. The hierarchical clustering analysis of differentially expressed genes (DEGs) grouped the 13 mutants into 5 subgroups with similar profiles of mis-regulated genes. Functional analysis of the DEGs in these mutants and correlation between gene expression and metabolite accumulation revealed system-wide effects on transcripts involved in multiple biological processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcriptoma/genética
4.
Plant Cell Physiol ; 63(6): 744-754, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275214

RESUMO

The complexity of lignin structure impedes efficient cell wall digestibility. Native lignin is composed of a mixture of three dominant monomers, coupled together through a variety of linkages. Work over the past few decades has demonstrated that lignin composition can be altered through a variety of mutational and transgenic approaches such that the polymer is derived almost entirely from a single monomer. In this study, we investigated changes to lignin structure and digestibility in Arabidopsis thaliana in near-single-monolignol transgenics and mutants and determined whether novel monolignol conjugates, produced by a FERULOYL-CoA MONOLIGNOL TRANSFERASE (FMT) or a p-COUMAROYL-CoA MONOLIGNOL TRANSFERASE (PMT), could be integrated into these novel polymers to further improve saccharification efficiency. Monolignol conjugates, including a new conjugate of interest, p-coumaryl p-coumarate, were successfully integrated into high-H, high-G and high-S lignins in A. thaliana. Regardless of lignin composition, FMT- and PMT-expressing plants produced monolignol ferulates and monolignol p-coumarates, respectively, and incorporated them into their lignin. Through the production and incorporation of monolignol conjugates into near-single-monolignol lignins, we demonstrated that substrate availability, rather than monolignol transferase substrate preference, is the most important determining factor in the production of monolignol conjugates, and lignin composition helps dictate cell wall digestibility.


Assuntos
Arabidopsis , Lignina , Arabidopsis/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo , Transferases/análise , Transferases/metabolismo
5.
Plant Cell ; 29(12): 3269-3285, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29203634

RESUMO

The phenylpropanoid pathway is a major global carbon sink and is important for plant fitness and the engineering of bioenergy feedstocks. In Arabidopsis thaliana, disruption of two subunits of the transcriptional regulatory Mediator complex, MED5a and MED5b, results in an increase in phenylpropanoid accumulation. By contrast, the semidominant MED5b mutation reduced epidermal fluorescence4-3 (ref4-3) results in dwarfism and constitutively repressed phenylpropanoid accumulation. Here, we report the results of a forward genetic screen for suppressors of ref4-3. We identified 13 independent lines that restore growth and/or phenylpropanoid accumulation in the ref4-3 background. Two of the suppressors restore growth without restoring soluble phenylpropanoid accumulation, indicating that the growth and metabolic phenotypes of the ref4-3 mutant can be genetically disentangled. Whole-genome sequencing revealed that all but one of the suppressors carry mutations in MED5b or other Mediator subunits. RNA-seq analysis showed that the ref4-3 mutation causes widespread changes in gene expression, including the upregulation of negative regulators of the phenylpropanoid pathway, and that the suppressors reverse many of these changes. Together, our data highlight the interdependence of individual Mediator subunits and provide greater insight into the transcriptional regulation of phenylpropanoid biosynthesis by the Mediator complex.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Epistasia Genética , Complexo Mediador/genética , Propanóis/metabolismo , Subunidades Proteicas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência Conservada , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes Supressores , Lignina/metabolismo , Malatos/metabolismo , Complexo Mediador/química , Complexo Mediador/metabolismo , Mutação de Sentido Incorreto/genética , Fenótipo , Fenilpropionatos/metabolismo , Solubilidade , Estresse Fisiológico/genética , Supressão Genética
6.
Nature ; 509(7500): 376-80, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24670657

RESUMO

Lignin is a phenylpropanoid-derived heteropolymer important for the strength and rigidity of the plant secondary cell wall. Genetic disruption of lignin biosynthesis has been proposed as a means to improve forage and bioenergy crops, but frequently results in stunted growth and developmental abnormalities, the mechanisms of which are poorly understood. Here we show that the phenotype of a lignin-deficient Arabidopsis mutant is dependent on the transcriptional co-regulatory complex, Mediator. Disruption of the Mediator complex subunits MED5a (also known as REF4) and MED5b (also known as RFR1) rescues the stunted growth, lignin deficiency and widespread changes in gene expression seen in the phenylpropanoid pathway mutant ref8, without restoring the synthesis of guaiacyl and syringyl lignin subunits. Cell walls of rescued med5a/5b ref8 plants instead contain a novel lignin consisting almost exclusively of p-hydroxyphenyl lignin subunits, and moreover exhibit substantially facilitated polysaccharide saccharification. These results demonstrate that guaiacyl and syringyl lignin subunits are largely dispensable for normal growth and development, implicate Mediator in an active transcriptional process responsible for dwarfing and inhibition of lignin biosynthesis, and suggest that the transcription machinery and signalling pathways responding to cell wall defects may be important targets to include in efforts to reduce biomass recalcitrance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Lignina/metabolismo , Complexo Mediador/genética , Mutação/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocombustíveis , Biomassa , Parede Celular/química , Parede Celular/metabolismo , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Lignina/biossíntese , Lignina/química , Complexo Mediador/química , Complexo Mediador/deficiência , Complexo Mediador/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transcrição Gênica/genética
7.
Annu Rev Genet ; 44: 337-63, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20809799

RESUMO

The processes underlying lignification, which for many years have been the near-exclusive purview of chemists and biochemists, have more recently been approached using both classical forward genetic screens and targeted reverse genetic approaches such as antisense suppression, RNAi, and characterization of insertional mutants. In this review, we provide an overview of the current understanding of lignin biosynthesis and structure, with emphasis on mutant and transgenic plants that have contributed to this knowledge. We also discuss ongoing work aimed at elucidating the relationship between lignin structure and function in vivo, as well as the phenotypic consequences arising from genetic manipulation of the lignin biosynthetic pathway.


Assuntos
Lignina/biossíntese , Lignina/genética , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Lignina/química , Lignina/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/genética
8.
Metab Eng ; 49: 36-46, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30025763

RESUMO

Lignin is a polymer that significantly inhibits saccharification of plant feedstocks. Adjusting the composition or reducing the total lignin content have both been demonstrated to result in an increase in sugar yield from biomass. However, because lignin is essential for plant growth, it cannot be manipulated with impunity. Thus, it is important to understand the control of carbon flux towards lignin biosynthesis such that optimal modifications to it can be made precisely. Phenylalanine (Phe) is the common precursor for all lignin subunits and it is commonly accepted that all biosynthetic steps, spanning multiple subcellular compartments, are known, yet an in vivo model of how flux towards lignin is controlled is lacking. To address this deficiency, we formulated and parameterized a kinetic model based on data from feeding Arabidopsis thaliana basal lignifying stems with ring labeled [13C6]-Phe. Several candidate models were compared by an information theoretic approach to select the one that best matched the experimental observations. Here we present a dynamic model of phenylpropanoid metabolism across several subcellular compartments that describes the allocation of carbon towards lignin biosynthesis in wild-type Arabidopsis stems. Flux control coefficients for the enzymes in the pathway starting from arogenate dehydratase through 4-coumarate: CoA ligase were calculated and show that the plastidial cationic amino-acid transporter has the highest impact on flux.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Lignina/biossíntese , Modelos Biológicos , Fenilpropionatos/metabolismo , Caules de Planta , Arabidopsis/citologia , Arabidopsis/metabolismo , Caules de Planta/citologia , Caules de Planta/metabolismo
9.
Plant Cell ; 27(5): 1529-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25944103

RESUMO

Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosinolatos/metabolismo , Propanóis/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Indolacéticos/metabolismo , Indóis/metabolismo , Lignina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Oximas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/metabolismo
10.
Plant Cell ; 27(8): 2195-209, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26265762

RESUMO

Modifying lignin composition and structure is a key strategy to increase plant cell wall digestibility for biofuel production. Disruption of the genes encoding both cinnamyl alcohol dehydrogenases (CADs), including CADC and CADD, in Arabidopsis thaliana results in the atypical incorporation of hydroxycinnamaldehydes into lignin. Another strategy to change lignin composition is downregulation or overexpression of ferulate 5-hydroxylase (F5H), which results in lignins enriched in guaiacyl or syringyl units, respectively. Here, we combined these approaches to generate plants enriched in coniferaldehyde-derived lignin units or lignins derived primarily from sinapaldehyde. The cadc cadd and ferulic acid hydroxylase1 (fah1) cadc cadd plants are similar in growth to wild-type plants even though their lignin compositions are drastically altered. In contrast, disruption of CAD in the F5H-overexpressing background results in dwarfism. The dwarfed phenotype observed in these plants does not appear to be related to collapsed xylem, a hallmark of many other lignin-deficient dwarf mutants. cadc cadd, fah1 cadc cadd, and cadd F5H-overexpressing plants have increased enzyme-catalyzed cell wall digestibility. Given that these CAD-deficient plants have similar total lignin contents and only differ in the amounts of hydroxycinnamaldehyde monomer incorporation, these results suggest that hydroxycinnamaldehyde content is a more important determinant of digestibility than lignin content.


Assuntos
Oxirredutases do Álcool/genética , Proteínas de Arabidopsis/genética , Parede Celular/genética , Lignina/biossíntese , Mutação , Oxirredutases do Álcool/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Cinamatos/química , Cinamatos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lignina/química , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Químicos , Estrutura Molecular , Plantas Geneticamente Modificadas
11.
Phytochem Anal ; 28(4): 267-276, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28146307

RESUMO

INTRODUCTION: The phenylpropanoid pathway is a source of a diverse group of compounds derived from phenylalanine, many of which are involved in lignin biosynthesis and serve as precursors for the production of valuable compounds, such as coumarins, flavonoids, and lignans. Consequently, recent efforts have been invested in mechanistically understanding monolignol biosynthesis, making the quantification of these metabolites vital. OBJECTIVE: To develop an improved and comprehensive analytical method for (i) extensively profiling, and (ii) accurately quantifiying intermediates of the monolignol biosynthetic network, using Arabidopsis thaliana as a model system. METHOD: A liquid chromatography-tandem mass spectrometry with electrospray ionization was developed to quantify phenylpropanoid metabolites in Arabidopsis wildtype and cinnamoyl CoA reductase1 (CCR1) deficient lines (ccr1). RESULTS: Vortexing at high temperatures (65°C) enhanced release of phenylpropanoids, specifically the more hydrophobic compounds. A pH of 5.3 and ammonium acetate buffer concentration of 2.5 mM resulted in an optimal analyte response across standards. Ion suppression was estimated using standard spike recovery studies for accurate quantitation. The optimized method was used to profile Arabidopsis wildtype and ccr1 stems. An increase in hydroxycinnamic acid derivatives and a decrease in the hydroxycinnamyl aldehydes and alcohols in ccr1 lines, supports a shift of flux from lignin synthesis to other secondary metabolites and phenylpropanoid derivatives. CONCLUSIONS: Compared to existing targeted profiling techniques, our method is capable of quantifying a wider range of intermediates (15 out of 22 in WT Arabidopsis stems) at low in vivo concentrations (~50 pmol/g-FW for certain compounds), while requiring minimal sample preparation. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Arabidopsis/metabolismo , Metabolômica , Fenilalanina/metabolismo , Propanóis/metabolismo , Aldeído Oxirredutases , Cromatografia de Fase Reversa , Ácidos Cumáricos/metabolismo , Lignina , Espectrometria de Massas em Tandem
12.
Plant Physiol ; 169(4): 2409-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26491147

RESUMO

The biosynthesis of lignin, flavonoids, and hydroxycinnamoyl esters share the first three enzymatic steps of the phenylpropanoid pathway. The last shared step is catalyzed by 4-coumarate:CoA ligase (4CL), which generates p-coumaroyl CoA and caffeoyl CoA from their respective acids. Four isoforms of 4CL have been identified in Arabidopsis (Arabidopsis thaliana). Phylogenetic analysis reveals that 4CL1, 4CL2, and 4CL4 are more closely related to each other than to 4CL3, suggesting that the two groups may serve different biological functions. Promoter-GUS analysis shows that 4CL1 and 4CL2 are expressed in lignifying cells. In contrast, 4CL3 is expressed in a broad range of cell types, and 4CL3 has acquired a distinct role in flavonoid metabolism. Sinapoylmalate, the major hydroxycinnamoyl ester found in Arabidopsis, is greatly reduced in the 4cl1 4cl3 mutant, showing that 4CL1 and 4CL3 function redundantly in its biosynthesis. 4CL1 accounts for the majority of the total 4CL activity, and loss of 4CL1 leads to reduction in lignin content but no growth defect. The 4cl1 4cl2 and 4cl1 4cl2 4cl3 mutants are both dwarf but do not have further reduced lignin than the 4cl1 mutant, indicating that either 4CL1 or 4CL2 is required for normal plant growth. Although 4CL4 has a limited expression profile, it does make a modest contribution to lignin biosynthesis. Together, these data show that the four isoforms of 4CL in Arabidopsis have overlapping yet distinct roles in phenylpropanoid metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Coenzima A Ligases/metabolismo , Propanóis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Coenzima A Ligases/genética , Regulação da Expressão Gênica de Plantas , Isoenzimas , Lignina/metabolismo , Redes e Vias Metabólicas , Mutação , Filogenia , Regiões Promotoras Genéticas/genética , Propanóis/química , Metabolismo Secundário
13.
Anal Chem ; 87(18): 9436-42, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26291845

RESUMO

Highly lignified vascular plant cell walls represent the majority of cellulosic biomass. Complete release of the biomass to deliver renewable energy by physical, chemical, and biological pretreatments is challenging due to the "protection" provided by polymerized lignin, and as such, additional tools to monitor lignin deposition and removal during plant growth and biomass deconstruction would be of great value. We developed a hyperspectral stimulated Raman scattering microscope with 9 cm(-1) spectral resolution and submicrometer spatial resolution. Using this platform, we mapped the aromatic ring of lignin, aldehyde, and alcohol groups in lignified plant cell walls. By multivariate curve resolution of the hyperspectral images, we uncovered a spatially distinct distribution of aldehyde and alcohol groups in the thickened secondary cell wall. These results collectively contribute to a deeper understanding of lignin chemical composition in the plant cell wall.


Assuntos
Arabidopsis/citologia , Parede Celular/metabolismo , Lignina/metabolismo , Microscopia/métodos , Análise Espectral Raman , Vibração , Álcoois/metabolismo , Aldeídos/metabolismo , Arabidopsis/genética , Lignina/química , Mutação , Oxirredução
14.
Plant Physiol ; 164(2): 584-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24381065

RESUMO

The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the impact of perturbation of phenylpropanoid metabolism on plant growth, we generated a chemically inducible C3'H expression construct and transformed it into the ref8 mutant. Application of dexamethasone to these plants greatly alleviates the dwarfism and sterility and substantially reverses the biochemical phenotypes of ref8 plants, including the reduction of lignin content and hyperaccumulation of flavonoids and p-coumarate esters. Induction of C3'H expression at different developmental stages has distinct impacts on plant growth. Although early induction effectively restored the elongation of primary inflorescence stem, application to 7-week-old plants enabled them to produce new rosette inflorescence stems. Examination of hypocotyls of these plants revealed normal vasculature in the newly formed secondary xylem, presumably restoring water transport in the mutant. The ref8 mutant accumulates higher levels of salicylic acid than the wild type, but depletion of this compound in ref8 did not relieve the mutant's growth defects, suggesting that the hyperaccumulation of salicylic acid is unlikely to be responsible for dwarfism in this mutant.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Dexametasona/farmacologia , Mutação/genética , Epiderme Vegetal/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Lignina/metabolismo , Oxigenases de Função Mista/metabolismo , Desenvolvimento Vegetal/efeitos dos fármacos , Epiderme Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Propanóis/metabolismo , Ácido Salicílico/metabolismo , Metabolismo Secundário/genética , Solubilidade , Fatores de Tempo
15.
Plant J ; 76(3): 357-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23889038

RESUMO

Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs γ-linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development.


Assuntos
Parede Celular/metabolismo , Lignina/metabolismo , Células Vegetais/metabolismo , Arabidopsis , Benzofuranos , Ácidos Cumáricos , Cumarínicos , Fluorescência , Fenilpropionatos/metabolismo , Pinus , Propionatos/metabolismo , Protoplastos/metabolismo , Plântula/metabolismo
16.
Plant Cell ; 23(7): 2708-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742988

RESUMO

Syringyl lignin, an important component of the secondary cell wall, has traditionally been considered to be a hallmark of angiosperms because ferns and gymnosperms in general lack lignin of this type. Interestingly, syringyl lignin was also detected in Selaginella, a genus that represents an extant lineage of the most basal of the vascular plants, the lycophytes. In angiosperms, syringyl lignin biosynthesis requires the activity of ferulate 5-hydroxylase (F5H), a cytochrome P450-dependent monooxygenase, and caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT). Together, these two enzymes divert metabolic flux from the biosynthesis of guaiacyl lignin, a lignin type common to all vascular plants, toward syringyl lignin. Selaginella has independently evolved an alternative lignin biosynthetic pathway in which syringyl subunits are directly derived from the precursors of p-hydroxyphenyl lignin, through the action of a dual specificity phenylpropanoid meta-hydroxylase, Sm F5H. Here, we report the characterization of an O-methyltransferase from Selaginella moellendorffii, COMT, the coding sequence of which is clustered together with F5H at the adjacent genomic locus. COMT is a bifunctional phenylpropanoid O-methyltransferase that can methylate phenylpropanoid meta-hydroxyls at both the 3- and 5-position and function in concert with F5H in syringyl lignin biosynthesis in S. moellendorffii. Phylogenetic analysis reveals that Sm COMT, like F5H, evolved independently from its angiosperm counterparts.


Assuntos
Lignina/biossíntese , Metiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Selaginellaceae/enzimologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Lignina/química , Magnoliopsida/enzimologia , Metiltransferases/classificação , Metiltransferases/genética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Estrutura Terciária de Proteína , Selaginellaceae/anatomia & histologia , Alinhamento de Sequência , Distribuição Tecidual
17.
Plant Cell Rep ; 33(8): 1263-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24737414

RESUMO

KEY MESSAGE: The gene coding for F5H from Eucalyptus globulus was cloned and used to transform an f5h -mutant of Arabidopsis thaliana , which was complemented, thus verifying the identity of the cloned gene. Coniferaldehyde 5-hydroxylase (F5H; EC 1.14.13) is a cytochrome P450-dependent monooxygenase that catalyzes the 5-hydroxylation step required for the production of syringyl units in lignin biosynthesis. The Eucalyptus globulus enzyme was characterized in vitro, and results showed that the preferred substrates were coniferaldehyde and coniferyl alcohol. Complementation experiments demonstrated that both cDNA and genomic constructs derived from F5H from E. globulus under the control of the cinnamate 4-hydroxylase promoter from Arabidopsis thaliana, or a partial F5H promoter from E. globulus, can rescue the inability of the A. thaliana fah1-2 mutant to accumulate sinapate esters and syringyl lignin. E. globulus is a species widely used to obtain products that require lignin removal, and the results suggest that EglF5H is a good candidate for engineering efforts aimed at increasing the lignin syringyl unit content, either for kraft pulping or biofuel production.


Assuntos
Acroleína/análogos & derivados , Arabidopsis/enzimologia , Eucalyptus/enzimologia , Lignina/metabolismo , Oxigenases de Função Mista/genética , Acroleína/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sistema Enzimático do Citocromo P-450/genética , Eucalyptus/genética , Expressão Gênica , Cinética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
J Struct Biol ; 184(2): 103-14, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24075949

RESUMO

The Arabidopsis stem is composed of five tissues - the pith, xylem, phloem, cortex and epidermis - each of which fulfills specific roles in support of the growth and survival of the organism. The lignocellulosic scaffolding of cell walls is specialized to provide optimal support for the diverse functional roles of these layers, but little is known about this specialization. X-ray scattering can be used to study this tissue-specific diversity because the cellulosic components of the cell walls give rise to recognizable scattering features interpretable in terms of the underlying molecular architecture and distinct from the largely unoriented scatter from other constituents. Here we use scanning X-ray microdiffraction from thin sections to characterize the diversity of molecular architecture in the Arabidopsis stem and correlate that diversity to the functional roles the distinct tissues of the stem play in the growth and survival of the organism.


Assuntos
Arabidopsis/ultraestrutura , Caules de Planta/ultraestrutura , Arabidopsis/metabolismo , Celulose/metabolismo , Celulose/ultraestrutura , Microanálise por Sonda Eletrônica , Microfibrilas/ultraestrutura , Minerais/metabolismo , Especificidade de Órgãos , Epiderme Vegetal/ultraestrutura , Difração de Raios X
19.
Plant Cell ; 22(5): 1620-32, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20511296

RESUMO

Defects in phenylpropanoid biosynthesis arising from deficiency in hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase (HCT) or p-coumaroyl shikimate 3'-hydroxylase (C3'H) lead to reduced lignin, hyperaccumulation of flavonoids, and growth inhibition in Arabidopsis thaliana. It was previously reported that flavonoid-mediated inhibition of auxin transport is responsible for growth reduction in HCT-RNA interference (RNAi) plants. This conclusion was based on the observation that simultaneous RNAi silencing of HCT and chalcone synthase (CHS), an enzyme essential for flavonoid biosynthesis, resulted in less severe dwarfing than silencing of HCT alone. In an attempt to extend these results using a C3'H mutant (ref8) and a CHS null mutant (tt4-2), we found that the growth phenotype of the ref8 tt4-2 double mutant, which lacks flavonoids, is indistinguishable from that of ref8. Moreover, using RNAi, we found that the relationship between HCT silencing and growth inhibition is identical in both the wild type and tt4-2. We conclude from these results that the growth inhibition observed in HCT-RNAi plants and the ref8 mutant is independent of flavonoids. Finally, we show that expression of a newly characterized gene bypassing HCT and C3'H partially restores both lignin biosynthesis and growth in HCT-RNAi plants, demonstrating that a biochemical pathway downstream of coniferaldehyde, probably lignification, is essential for normal plant growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flavonoides/biossíntese , Lignina/biossíntese , Aciltransferases/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Flavonoides/química , Lignina/química , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutagênese Insercional/genética , Mutação/genética , Fenóis/metabolismo , Fenótipo , Folhas de Planta/metabolismo , Interferência de RNA , Selaginellaceae/enzimologia , Solubilidade , Transgenes/genética
20.
Plant Cell ; 22(4): 1033-45, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20371642

RESUMO

Phenotypic convergence in unrelated lineages arises when different organisms adapt similarly under comparable selective pressures. In an apparent example of this process, syringyl lignin, a fundamental building block of plant cell walls, occurs in two major plant lineages, lycophytes and angiosperms, which diverged from one another more than 400 million years ago. Here, we show that this convergence resulted from independent recruitment of lignin biosynthetic cytochrome P450-dependent monooxygenases that route cell wall monomers through related but distinct pathways in the two lineages. In contrast with angiosperms, in which syringyl lignin biosynthesis requires two phenylpropanoid meta-hydroxylases C3'H and F5H, the lycophyte Selaginella employs one phenylpropanoid dual meta-hydroxylase to bypass several steps of the canonical lignin biosynthetic pathway. Transgenic expression of the Selaginella hydroxylase in Arabidopsis thaliana dramatically reroutes its endogenous lignin biosynthetic pathway, yielding a novel lignin composition not previously identified in nature. Our findings demonstrate a unique case of convergent evolution via distinct biochemical strategies and suggest a new way to genetically reconstruct lignin biosynthesis in higher plants.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Selaginellaceae/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Parede Celular/química , Sistema Enzimático do Citocromo P-450/genética , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Selaginellaceae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA