Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(13): e2303498, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38329408

RESUMO

Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.


Assuntos
Impressão Tridimensional , Stents , Humanos , Alicerces Teciduais/química , Células Endoteliais da Veia Umbilical Humana , Polímeros/química , Teste de Materiais , Poliésteres/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
2.
Biomater Sci ; 11(13): 4602-4615, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37198968

RESUMO

Biomimetic surface modification with cell-adhesive peptides is a promising approach to improve endothelialization of current bioresorbable stents (BRS). Among them, RGDS and YIGSR sequences have been reported to mediate adhesion and migration of endothelial cells (ECs) while preventing platelet activation. This work presents the functionalization of novel 3D-printed poly-L-lactic acid (PLLA) and poly(L-lactic-co-ε-caprolactone) (PLCL) BRS with linear RGDS and YIGSR sequences, as well as a dual platform (PF) containing both motifs within a single biomolecule. Functionalized surfaces were characterized in terms of static contact angle, biomolecule distribution under confocal fluorescence microscopy and peptide quantification via detachment from the surface, showing a biomolecule density in the range of 0.5 to 3.5 nmol cm-2. Biological evaluation comprised a cell adhesion test on functionalized films with ECs and a blood perfusion assay on functionalized stents to assess ECs response and device hemocompatibility, respectively. Cell adhesion assays evidenced significantly increased cell number and spreading onto functionalized films with respect to control samples. Regarding stents' hemocompatibility, platelet adhesion onto PLCL stents was severely decreased with respect to PLLA. In addition, functionalization with RGDS, YIGSR and the PF rendered BRS stents displaying even further reduced platelet adhesion. In conclusion, the combination of intrinsically less prothrombogenic materials such as PLCL and its functionalization with EC-discriminating adhesive biomolecules paves the way for a new generation of BRS based on accelerated re-endothelialization approaches.


Assuntos
Implantes Absorvíveis , Células Endoteliais , Peptídeos/química , Stents , Polímeros/química , Adesão Celular , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA