RESUMO
BACKGROUND: Tumor immunotherapy can not only eliminate the primary lesion, but also produce long-term immune memory, effectively inhibiting tumor metastasis and recurrence. However, immunotherapy also showed plenty of limitations in clinical practice. In recent years, the combination of nanomaterials and immunotherapy has brought new light for completely eliminating tumors with its fabulous anti-tumor effects and negligible side effects. METHODS: The Core Collection of Web of Science (WOSCC) was used to retrieve and obtain relevant literatures on antitumor nano-immunotherapy since the establishment of the WOSCC. Bibliometrix, VOSviewer, CiteSpace, GraphPad Prism, and Excel were adopted to perform statistical analysis and visualization. The annual output, active institutions, core journals, main authors, keywords, major countries, key documents, and impact factor of the included journals were evaluated. RESULTS: A total of 443 related studies were enrolled from 2004 to 2022, and the annual growth rate of articles reached an astonishing 16.85%. The leading countries in terms of number of publications were China and the United States. Journal of Controlled Release, Biomaterials, Acta Biomaterialia, Theranostics, Advanced Materials, and ACS Nano were core journals publishing high-quality literature on the latest advances in the field. Articles focused on dendritic cells and drug delivery accounted for a large percentage in this field. Key words such as regulatory T cells, tumor microenvironment, immune checkpoint blockade, drug delivery, photodynamic therapy, photothermal therapy, tumor-associated macrophages were among the hottest themes with high maturity. Dendritic cells, vaccine, and T cells tend to become the popular and emerging research topics in the future. CONCLUSIONS: The combined treatment of nanomaterials and antitumor immunotherapy, namely antitumor nano-immunotherapy has been paid increasing attention. Antitumor nano-immunotherapy is undergoing a transition from simple to complex, from phenotype to mechanism.
Assuntos
Materiais Biocompatíveis , Nanoestruturas , Terapia Combinada , Sistemas de Liberação de Medicamentos , ImunoterapiaRESUMO
BACKGROUND: Vulvar migration is a rare complication of filler injection for breast augmentation, generally presenting as repeated pain and fever. We will report a case of woman with polyacrylamide hydrogel breast injection develops vulvar abscess. CASE PRESENTATION: A woman with a history of polyacrylamide hydrogel breast injection was noted to have vulvar abscess due to migration of filler materials. Filler removal surgery and vacuum sealing drainage was performed for this patient. The patient was discharged from the hospital with no further complications. After a review of pertinent literature, only four previous case reports are found. Local inflammatory response, infection, large volume injections, inframammary fold destruction, hematogenous or lymphatic migrate, trauma, gravity and external pressure could play essential parts in the migration of injected filler. CONCLUSION: Polyacrylamide hydrogel migration poses a worldwide challenge, necessitating personalized solutions. Our case study underscores the importance of comprehensive examinations for individuals with a history of filler breast injection when suspecting vulvar filler migration.
Assuntos
Abscesso , Mamoplastia , Feminino , Humanos , Mama , Resinas Acrílicas/efeitos adversosRESUMO
OBJECTIVES: In this study, we investigated the dispersion patterns of aerosols and droplets in dental clinics and developed a suction device to evaluate its effectiveness in reducing aerosols during dental procedures. MATERIALS AND METHODS: Firstly, the continuous images of oral aerosols and droplets were photographed with a high-speed camera, and the trajectories of these particles were recognized and processed by Image J to determine key parameters affecting particle dispersion: diffusion velocity, distance, and angle. Secondly, based on the parameter data, the flow field of aerosol particles around the oral cavity was simulated using computational fluid dynamics (CFD), and the flow field under adsorption conditions was simulated to demonstrate the aerodynamic characteristics and capture efficiencies of the single-channel and three-channel adsorption ports at different pressures. Finally, according to the simulated data, a three-channel suction device was developed, and the capture efficiency of the device was tested by the fluorescein tracer method. RESULTS: The dispersion experimental data showed that aerosol particles' maximum diffusion velocity, distance, and angle were 6.2 m/s, 0.55 m, and 130°, respectively. The simulated aerosol flow-field distribution was consistent with the aerosol dispersion patterns. The adsorption simulation results showed that the outlet flow rate of single-channel adsorption was 184.5 L/s at - 350 Pa, and the aerosol capture efficiency could reach 79.4%. At - 350 Pa and - 150 Pa, the outlet flow rate of three-channel adsorption was 228.9 L/s, and the capture efficiency was 99.23%. The adsorption experimental data showed that the capture efficiency of three-channel suction device was 97.71%. CONCLUSIONS: A three-channel suction device was designed by simulations and experiments, which can capture most aerosols in the dental clinic and prevent them from spreading. CLINICAL RELEVANCE: Using three-channel suction devices during oral treatment effectively reduces the spread of oral aerosols, which is essential to prevent the spread of epidemics and ensure the health and safety of patients and dental staff.
Assuntos
Aerossóis , Humanos , Simulação por ComputadorRESUMO
The measurement of linear energy transfer (LET) is crucial for the evaluation of the radiation effect in heavy ion therapy. As two detectors which are convenient to implant into the phantom, the performance of CR-39 and thermoluminescence detector (TLD) for LET measurement was compared by experiment and simulation in this study. The results confirmed the applicability of both detectors for LET measurements, but also revealed that the CR-39 detector would lead to potential overestimation of dose-averaged LET compared with the simulation by PHITS, while the TLD would have a large uncertainty measuring ions with LET larger than 20 keVµm-1. The results of this study were expected to improve the detection method of LET for therapeutic carbon beam and would finally be benefit to the quality assurance of heavy ion radiotherapy.
Assuntos
Radioterapia com Íons Pesados , Transferência Linear de Energia , Dosimetria Termoluminescente , Dosimetria Termoluminescente/instrumentação , Imagens de Fantasmas , Carbono , Desenho de Equipamento , PolietilenoglicóisRESUMO
PURPOSE: To assess the clinical performance of screw-retained, ceramic-veneered, monolithic zirconia partial implant-supported fixed dental prostheses (ISFDP) over 5-10 years and to evaluate implant- and prosthesis-related factors influencing treatment failure and complications. MATERIALS AND METHODS: Partially edentulous patients treated with screw-retained all-ceramic ISFDPs with 2-4 prosthetic units with a documented follow-up of ≥5 years after implant loading were included in this retrospective study. The outcomes analyzed included implant/prosthesis failure and biological/technical complications. Possible risk factors were identified using the mixed effects Cox regression analysis. RESULTS: A screened sample of 171 participants with 208 prostheses (95% of the restorations were splinted crowns without a pontic) supported by 451 dental implants were enrolled in this study. The mean follow-up duration after prosthesis delivery was 82.4 ±17.2 months. By the end of the follow-up period, 431 (95.57%) of the 451 implants remained functional at the implant level. At the prosthesis level, 185 (88.94%) of the 208 partial ISFDPs remained functional. Biological complications were observed in 67 implants (14.86%), and technical complications were observed in 62 ISFDPs (29.81%). Analysis revealed only emergence profiles (over-contoured) as a significant risk factor for implant failure (P<0.001) and biological complications (P<0.001). Full-coverage ceramic-veneered zirconia prostheses had a significantly greater chance of chipping (P<0.001) compared with buccal-ceramic-veneered or monolithic zirconia prostheses. CONCLUSIONS: Screw-retained ceramic-veneered, monolithic partial ISFDPs have a favorable long-term survival rate. Over-contoured emergence profile is a significant risk factor associated with implant failure and biological complications. Buccal-ceramic-veneered and monolithic zirconia partial ISFDPs lower the initial prevalence of chipping compared with a full-coverage veneered design.
Assuntos
Cerâmica , Zircônio , Humanos , Estudos Retrospectivos , Coroas , Parafusos Ósseos , Prótese Dentária Fixada por Implante/efeitos adversos , Falha de Restauração Dentária , Porcelana Dentária , Prótese Parcial FixaRESUMO
The in-vivo electron paramagnetic resonance (EPR) method can be used for on-site, rapid, and non-invasive detection of radiation dose to casualties after nuclear and radiation emergencies. For in-vivo EPR spectrum analysis, manual labeling of peaks and calculation of signal intensity are often used, which have problems such as large workload and interference by subjective factors. In this study, a method for automatic classification and identification of in-vivo EPR spectra was established using support vector machine (SVM) technology, which can in-batch and automatically identify and screen out invalid spectra due to vibration and dental surface water interference during in-vivo EPR measurements. In this study, a spectrum analysis method based on genetic algorithm optimization neural network (GA-BPNN) was established, which can automatically identify the radiation-induced signals in in-vivo EPR spectra and predict the radiation doses received by the injured. The experimental results showed that the SVM and GA-BPNN spectrum processing methods established in this study could effectively accomplish the automatic spectra classification and radiation dose prediction, and could meet the needs of dose assessment in nuclear emergency. This study explored the application of machine learning methods in EPR spectrum processing, improved the intelligence level of EPR spectrum processing, and would help to enhance the efficiency of mass EPR spectra processing.
Assuntos
Algoritmos , Aprendizado de Máquina , Doses de Radiação , Máquina de Vetores de Suporte , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Redes Neurais de ComputaçãoRESUMO
BACKGROUND: Restoration of salivary gland function in Sjogren's syndrome (SS) is still a challenge. Dental pulp stem cells (DPSCs) derived exosomes had shown anti-inflammatory, anti-oxidative, immunomodulatory, and tissue function restorative abilities. However, the salivary gland function restoration potential of DPSCs-derived exosomes (DPSC-Exos) during SS has not been investigated yet. METHODS: DPSC-Exos was isolated by ultracentrifugation methods and characterized. Salivary gland epithelial cells (SGEC) were treated with interferon-gamma (IFN-γ) to mimic SS in vitro and cultured with or without DPSC-Exos. SGEC survival and aquaporin 5 (AQP5) expression were analyzed. mRNA sequencing and bioinformatics analysis were performed in IFN-γ vs. DPSC-Exos+ IFN-γ treated SGEC. Non-obese diabetic (NOD)/ltj female mice (SS model), were intravenously administered with DPSC-Exos, and salivary gland functions and SS pathogenicity were analyzed. Furthermore, the mRNA sequencing and bioinformatics predicted mechanism of the therapeutic effect of DPSC-Exos was further investigated both in vitro and in vivo using RT-qPCR, Western blot, immunohistochemistry, immunofluorescence, flowcytometry analysis. RESULTS: DPSC-Exos partially rescued IFN-γ triggered SGEC death. IFN-γ inhibited AQP5 expression in SGEC and DPSC-Exos reversed this effect. Transcriptome analysis showed GPER was the upregulated DEG in DPSC-Exos-treated SGEC with a positive correlation with salivary secretion-related DEGs. Pathway enrichment analysis revealed that DEGs were mainly attributed to estrogen 16 alpha-hydroxylase activity, extracellular exosome function, cAMP signaling, salivary secretion, and estrogen signaling. Intravenous injection of DPSC-Exos in NOD/ltj mice alleviated the SS syndrome as indicated by the increased salivary flow rate, attenuated glandular inflammation, and increased AQP5 expression. GPER was also upregulated in the salivary gland of DPSC-Exos-treated NOD/ltj mice compared with the PBS-treated NOD/ltj mice. IFN-γ+DPSC-Exos-treated SGEC showed higher expression of AQP5, p-PKA, cAMP, and intracellular Ca2+ levels compared with IFN-γ-treated SGEC. These effects were reversed by the inhibition of GPER. CONCLUSIONS: Our results showed that DPSC-Exos revitalize salivary gland epithelial cell function during SS via the GPER-mediated cAMP/PKA/CREB pathway suggesting the possible therapeutic potential of DPSC-Exos in SS-treatment.
Assuntos
Polpa Dentária , Exossomos , Glândulas Salivares , Síndrome de Sjogren , Humanos , Animais , Camundongos , Polpa Dentária/citologia , Células Cultivadas , Exossomos/metabolismo , Feminino , Camundongos Endogâmicos NOD , Interferon gama/farmacologia , Glândulas Salivares/citologia , Células Epiteliais/metabolismo , Síndrome de Sjogren/terapiaRESUMO
There is an endogenous electric field in living organisms, which plays a vital role in the development and regeneration of bone tissue. Therefore, self-powered piezoelectric material for bone repair has become hot research in recent years. However, the current piezoelectric materials for tissue regeneration still have the shortcomings of lack of biological activity and three-dimensional structure. Here, we proposed a three-dimensional polyurethane foam (PUF) scaffold coated with piezoelectric poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and modified by a calcium phosphate (CaP) mineralized coating. The preferred scaffold has an open circuit voltage and short circuit current output of 5â V and 200â nA. Combining the physical and chemical properties of the CaP coating, the piezoelectric signal of PVDF-HFP and the three-dimensional structure of PUF, the scaffold exhibits superior promotion of cell osteogenic differentiation and ectopic bone formation inâ vivo. The mechanism is attributed to an increase in intracellular Ca2+ levels in response to chemical and piezoelectric stimulation with the material. This research not only paves the way for the application of piezoelectric scaffolds to stimulate osteoblasts differentiation inâ situ, but also lays the foundation for the clinical treatment of long-term osteoporosis.
Assuntos
Osteogênese , Alicerces Teciduais , Polivinil/química , Diferenciação CelularRESUMO
This theoretical study examines the formation, structure, and stability of two of the most ordered nanothreads produced yet, those derived from furan and thiophene. The energetic consequences and activation barriers of the first two steps of oligomerization via a Diels-Alder mechanism were examined. The ca. 20 GPa difference in the synthetic pressures (lower for furan) is explainable in terms of the greater loss of aromaticity by the thiophene. The effects of pressure on the reaction profiles, operating through a volume decrease along the reaction coordinate, are illustrated. The interesting option of polymerization proceeding in one or two directions opens up the possibility of polymers with opposing, cumulative dipole moments. The computed activation volumes are consistently more negative for furan, in accordance with the lower onset pressure of furan polymerization. The energetics of three ordered polymer structures were examined. The syn polymer, with all O/S atoms on the same side, if not allowed to distort, is at a high energy relative to the other two due to the O/S lone pair repulsion, understandably greater for S than for O at the 2.8/2.6 Å separation. Set free, the syn isomers curve or arch in two- or three-dimensional (helical) ways, whose energetics are traced in detail. The syn polymer can also stabilize itself by twisting into zig-zag or helical energy minima. The release of strain in a linear thread as the pressure is relaxed to 1 atm, with consequent thread curving, is a likely mechanism for the observed loss of the crystalline order in the polymer as it is returned to ambient pressure.
Assuntos
Furanos , Tiofenos , Reação de Cicloadição , Furanos/química , Modelos Teóricos , Polímeros/químicaRESUMO
BACKGROUND: Sjogren's syndrome (SS) is an autoimmune disorder characterized by the destruction of exocrine glands, resulting in dry mouth and eyes. Currently, there is no effective treatment for SS, and the mechanisms associated with inadequate salivary secretion are poorly understood. METHODS: In this study, we used NOD mice model to monitor changes in mice's salivary secretion and water consumption. Tissue morphology of the submandibular glands was examined by H&E staining, and Immunohistochemical detected the expression of AQP5 (an essential protein in salivary secretion). Global gene expression profiling was performed on submandibular gland tissue of extracted NOD mice model using RNA-seq. Subsequently, a series of bioinformatics analyses of transcriptome sequencing was performed, including differentially expressed genes (DEGs) identification, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, PPI network construction, hub gene identification, and the validity of diagnostic indicators using the dataset GSE40611. Finally, IFN-γ was used to treat the cells, the submandibular gland tissue of NOD mice model was extracted, and RT-qPCR was applied to verify the expression of hub genes. RESULTS: We found that NOD mice model had reduced salivary secretion and increased water consumption. H&E staining suggests acinar destruction and basement membrane changes in glandular tissue. Immunohistochemistry detects a decrease in AQP5 immunostaining within acinar. In transcriptome sequencing, 42 overlapping DEGs were identified, and hub genes (REN, A2M, SNCA, KLK3, TTR, and AZGP1) were identified as initiating targets for insulin signaling. In addition, insulin signaling and cAMP signaling are potential pathways for regulating salivary secretion and constructing a regulatory relationship between target-cAMP signaling-salivary secretion. CONCLUSION: The new potential targets and signal axes for regulating salivary secretion provide a strategy for SS therapy in a clinical setting.
RESUMO
To alleviate the dilemma of drug administration in Alzheimer's disease (AD) patients, it is of great significance to develop a new drug delivery system. In this study, a subcutaneously implanted microneedle (MN) device with a swellable gelatin methacryloyl (GelMA) needle body and a dissolvable polyvinyl alcohol (PVA) backing layer was designed. The backing layer quickly dissolved once the MN was introduced into the subcutaneous, and the hydrogel needles were implanted in the subcutaneous to enable prolonged drug release. Compared with oral administration, the MN system offers the benefits of a high administration rate, a fast onset of effect, and a longer duration of action. By detecting the concentration of acetylcholine (ACH) and Aß 1-42, it was found that MN administration exhibited a stronger therapeutic effect. The biological safety of the MN system was also assessed, and no obvious signs of hemolysis, cytotoxicity, and inflammatory reaction were observed. Together, these findings suggested that the MN system is a convenient, efficient, and safe method of delivering donepezil hydrochloride (DPH) and may provide AD patients with a novel medicine administration option.
Assuntos
Doença de Alzheimer , Humanos , Donepezila/farmacologia , Donepezila/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Agulhas , Sistemas de Liberação de Medicamentos , Álcool de Polivinil , Administração CutâneaRESUMO
The use of conventional fabrication methods rapidly developed the performance and notable enhancements of optoelectronic devices. However, it proved challenging to develop and demonstrate stable optoelectronic devices with biodegradability and biocompatibility properties towards sustainable development and extensive applications. This study incorporates a water-soluble Cr-phycoerythrin (Cr-PE) biomaterial to observe its optical and electronic properties effects on the pristine indium gallium zinc oxide (IGZO)-based photodetector. The fabricated photodetector demonstrates an extended absorption detection region, enhanced optoelectronic performance, and switchable function properties. The resulting photocurrent and responsivity of the IGZO/Cr-PE structure have increased by 5.7 and 7.1 times as compared to the pristine IGZO photodetector. It was also observed that the photodetector could operate in UV and UV-visible with enhanced optical properties by effectively adding the water-soluble Cr-PE. Also, the sensing region of IGZO photodetector becomes changeable. It exhibits switchable dual detection by alternatively dripping and removing the Cr-PE on the IGZO layer. Different measurement parameters such as detectivity, repeatability, and sensitivity are highlighted to effectively prove the advantage of including Cr-PE on the photodetector structure. This study contributes to understanding the potential functions in improving optoelectronic devices through an environmental-friendly method.
Assuntos
Gálio , Índio , Materiais Biocompatíveis , Gálio/química , Índio/química , Água , ZincoRESUMO
Tissue regeneration is the preferred treatment for dentin and bone tissue defects. Dental pulp stem cells (DPSCs) have been extensively studied for their use in tissue regeneration, including the regeneration of dentin and bone tissue. LIM mineralization protein-1 (LMP-1) is an intracellular non-secretory protein that plays a positive regulatory role in the mineralization process. In this study, an LMP-1-induced DPSCs model was used to explore the effect of LMP-1 on the proliferation and odonto/osteogenic differentiation of DPSCs, as well as the underlying mechanisms. As indicated by the cell counting kit-8 assay, the results showed that LMP-1 did not affect the proliferation of DPSCs. Overexpression of LMP-1 significantly promoted the committed differentiation of DPSCs and vice versa, as shown by alkaline phosphatase activity assay, alizarin red staining, western blot assay, quantitative real-time polymerase chain reaction assay, and in vivo mineralized tissue formation assay. Furthermore, inhibiting the activation of the extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) pathways using specific pathway inhibitors showed that the ERK1/2 and p38 MAPK pathways attenuated the differentiation of DPSCs. Besides, the expression of BMP signaling pathway components were also determined, which suggested that LMP-1 could activate BMP-2/Smad1/5 signaling pathway. Our results not only indicated the underlying mechanism of LMP-1 treated DPSCs but also provided valuable insight into therapeutic strategies in regenerative medicine.
Assuntos
Osteogênese , Proteínas Quinases p38 Ativadas por Mitógeno , Diferenciação Celular , Proliferação de Células/genética , Células Cultivadas , Polpa Dentária/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno , Osteogênese/genética , Transdução de Sinais , Células-Tronco/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
BACKGROUND: Chin augmentation with hyaluronic acid (HA) injections can effectively improve mental appearance. OBJECTIVE: To introduce a HA injection technique for chin augmentation and evaluate its clinical effects. METHODS: A total of 326 patients who received HA injection for chin augmentation from January 2018 to May 2021 were retrospectively reviewed. All patients were injected with the technique according to the anatomical morphology of the chin using a needle and cannula. Patient data were collected, the effects were analyzed, and adverse reactions were observed and recorded. RESULTS: There were 326 patients involved in this study with a mean age of 26.4 years. The median volume of HA injected was 1.85 mL. The shape and contour of the chin was significantly improved in all patients immediately after injection. Most improvements were retained up to 6 months and partial improvements remained visible for 12 months. Swelling and pain occurred in 284 patients (87.1%), local ecchymosis occurred in 31 patients (9.5%), and asymmetry was found in 8 patients (2.5%). There were no other complications such as infection, embolism, necrosis, nodule, or witch's chin. All patients reported satisfaction with results of the HA injections. CONCLUSION: Injection of HA according to the anatomical morphology of the chin is a safe and effective technique for chin augmentation and results in high patient satisfaction.
Assuntos
Técnicas Cosméticas , Ácido Hialurônico , Adulto , Queixo , Humanos , Ácido Hialurônico/efeitos adversos , Injeções , Satisfação do Paciente , Estudos RetrospectivosRESUMO
Although titanium (Ti) and Ti-based alloy have been widely used as dental and orthopedic implant materials, its bioinertness hindered the rapid osseointegration. Therefore, it is recommended to acquire ideal topographic and chemical characteristics through surface modification methods. 3D printing is a delicate manufacture technique which possesses superior controllability and reproducibility. While aspirin serve as a well-established non-steroidal anti-inflammatory agent. Recently, the importance of immune system in regulating bone dynamics has attracted increasing attention. We herein superimposed the aspirin/poly (lactic-co-glycolic acid) (ASP/PLGA) coating on the 3D-printed Ti-6Al-4V surface with uniform micro-structure to establish the Ti64-M-ASP/PLGA substrate. Scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and contact angle test confirmed the successful fabrication of the Ti64-M-ASP/PLGA substrate, with increased wettability and sustained release pattern of ASP. Compared with the Ti64 base material, the Ti64-M-ASP/PLGA substrate showed enhanced M2 and depressed M1 genes and proteins expressions in macrophages. The novel Ti64-M-ASP/PLGA substrate also displayed enhanced osteoblast proliferation, adhesion, extracellular mineralization ability and osteogenic gene expressions when cultured with macrophage conditioned medium in vitro. Furthermore, rat femora implantation model was used for in vivo evaluation. After 4 weeks of implantation, push out test, micro-computed tomography (micro-CT) and histological analyses all confirmed the superior osseointegration capabilities of the Ti64-M-ASP/PLGA implant than the other groups. Our study revealed the synergistic role played by 3D-printed micro topography and immunoregulatory drug aspirin in promoting osteogenesis in vitro and accelerating osseointegration in vivo, thus providing a promising method for better modifying the implant surface. Graphical abstract.
Assuntos
Osseointegração , Titânio , Ligas/farmacologia , Animais , Anti-Inflamatórios não Esteroides , Aspirina/farmacologia , Meios de Cultivo Condicionados/farmacologia , Preparações de Ação Retardada , Macrófagos , Osteoblastos , Osteogênese , Impressão Tridimensional , Ratos , Reprodutibilidade dos Testes , Propriedades de Superfície , Titânio/química , Microtomografia por Raio-XRESUMO
Carbohydrate mouth rinsing (CMR) potentially affects the interval training performance of taekwondo athletes. This study explored the effect of CMR on vertical jump, kicking speed, and fatigue index before and after simulated taekwondo competition. In a crossover experimental design, 13 trained taekwondo athletes were randomly divided into the CMR and control trials. After warming up, the participants used 6.6% maltodextrin (CMR trial) or mineral water (control trial) to rinse their mouth. Next, the participants underwent tests of vertical jump, kicking speed, and maximum number of kicks. After the tests, the participants rinsed their mouth again, followed by using Wingate testing bikes for 5-s sprint and 25-s rest to simulate taekwondo competitions. Four repetitions were performed in each round for 2 min for a total of three rounds. The results revealed that the fatigue index of the participants in the CMR trial before and after the simulated competition was significantly lower than that of the control trial. However, the two trials differed nonsignificantly in their performance in vertical jump, kicking speed, and the simulated competition. Overall, the study results indicated that CMR reduces the fatigue index but no change was observed in performance for vertical jump, kicking speed, and the simulated competition of trained taekwondo athletes.
Assuntos
Desempenho Atlético , Artes Marciais , Carboidratos , Fadiga , Humanos , Antissépticos BucaisRESUMO
ABSTRACT: En bloc reconstruction of extensive head and neck defects is feasible with matched tissue from the medial arm or chest. Nevertheless, the donor site faces significant morbidity following massive cutaneous flap harvesting. The serial flap transfer technique can increase the reconstructive ability of these flaps and minimize the donor site morbidity. A retrospective review was conducted from 2016 to 2020 on all patients who had undergone extensive head and neck reconstruction with the serial flap transfer technique. En bloc reconstruction of defects in the head and neck was performed using expanded perforator-plus flaps from the medial arm or chest; various flaps from the back were used to close the donor-site defects. Flap type, flap survival, complications, and revision procedures were assessed. This case series included 16 patients. The donor site of the chest or medial arm was successfully closed with the assistance of the thoracodorsal artery perforator flap, the latissimus dorsi myocutaneous flap, ortheparascapular flap. A medial arm flap with a width of 15âcm and a chest flap with a 16âcm width could be transferred with the primary closure of the donor sites. All flaps survived, except 1 had marginal necrosis. Complications occurred in 2 patients and were successfully managed nonsurgically. Both the recipient and donor sites were restored with good aesthetic results. Application of the serial flap transfer technique in extensive head and neck reconstruction decreases the donor site morbidity to a minimum and improves the overall outcomes.
Assuntos
Mamoplastia , Retalho Perfurante , Procedimentos de Cirurgia Plástica , Lesões dos Tecidos Moles , Estética Dentária , Humanos , Pescoço/cirurgia , Retalho Perfurante/irrigação sanguínea , Procedimentos de Cirurgia Plástica/métodosRESUMO
Sensing and imaging pH inside living cells are of paramount importance for better penetrating cellular functions and disease diagnostics. Herein, we engineered an original pH sensor by a simple one-step self-assembly of poly(ethylene glycol) (PEG)ylated phospholipid (DSPE-PEG) and a phenol red small molecule on the surface of upconversion nanoparticles (UCNPs) to form a phospholipid monolayer for sensing and imaging the change of intracellular pH. The sensor showed excellent reversibility and rapid response to the pH variations. Furthermore, this pH sensing system could measure spatial and temporal pH changes during endocytosis and interrogate the pH fluctuations inside cells under external stimuli. Our experimental results revealed that the pH sensor was able to map spatial and temporal pH fluctuations inside living cells, showing its potential application in diagnostics and pH-related study of cell biology.
Assuntos
Nanopartículas , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Fosfolipídeos , PolietilenoglicóisRESUMO
The huge consumption of single-use plastic straws has brought a long-lasting environmental problem. Paper straws, the current replacement for plastic straws, suffer from drawbacks, such as a high cost of the water-proof wax layer and poor water stability due to the easy delamination of the wax layer. It is therefore crucial to find a high-performing alternative to mitigate the environmental problems brought by plastic straws. In this paper, all natural, degradable, cellulose-lignin reinforced composite straws, inspired by the reinforcement principle of cellulose and lignin in natural wood are developed. The cellulose-lignin reinforced composite straw is fabricated by rolling up a wet film made of homogeneously mixed cellulose microfibers, cellulose nanofibers, and lignin powders, which is then baked in oven at 150 °C. When baked, lignin melts and infiltrates the micro-nanocellulose network, acting as a polyphenolic binder to improve the mechanical strength and hydrophobicity performance of the resulting straw. The obtained straws demonstrate several advantageous properties over paper straws, including 1) excellent mechanical performance, 2) high hydrostability, and 3) low cost. Moreover, the natural degradability of the cellulose-lignin reinforced composite straws makes them promising candidates to replace plastic straws and suggests possible substitutes for other petroleum-based plastics.
Assuntos
Lignina , Nanofibras , Celulose , Interações Hidrofóbicas e Hidrofílicas , MadeiraRESUMO
The drug diffusion issue in microneedles is the focus of its medical application. It will not only affect the distribution of drugs in the needle body but will also have an impact on the drug release performance of the microneedle. The utilization of cross-linked polymer materials to obtain the drug diffusion control has been experimentally verified as a feasible method. However, the mechanism research on the molecular level is still incomplete. In this study, the dissipative particle dynamics (DPD) simulation has been applied to study the effect of the cross-linking reaction on drug diffusion in hyaluronic acid microneedles. We have discovered that when the cross-linking degree reaches 90%, the diffusion coefficient of the drug is 6.45 times lower than that of the uncross-linked system. The main reason for the decline in drug diffusion ability is that the cross-linking reaction varies the conformation of the polymer. The amplification in the cross-linking degree makes the polymer coils more compact and approach each other, finally forming a continuously distributed cross-linked network, which reduces its degradation rate in the body. Simultaneously, these cross-linked networks can also hinder the interaction of soluble drugs with water, thereby preventing the premature release of drugs. The simulation results are consistent with the data collected in the previous microneedle experiment. This work will be an extension of DPD simulation in the application of biological materials.