Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 207
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 82: 238-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401747

RESUMO

Ectoine, a crucial osmoprotectant for salt adaptation in halophiles, has gained growing interest in cosmetics and medical industries. However, its production remains challenged by stringent fermentation process in model microorganisms and low production level in its native producers. Here, we systematically engineered the native ectoine producer Halomonas bluephagenesis for ectoine production by overexpressing ectABC operon, increasing precursors availability, enhancing product transport system and optimizing its growth medium. The final engineered H. bluephagenesis produced 85 g/L ectoine in 52 h under open unsterile incubation in a 7 L bioreactor in the absence of plasmid, antibiotic or inducer. Furthermore, it was successfully demonstrated the feasibility of decoupling salt concentration with ectoine synthesis and co-production with bioplastic P(3HB-co-4HB) by the engineered H. bluephagenesis. The unsterile fermentation process and significantly increased ectoine titer indicate that H. bluephagenesis as the chassis of Next-Generation Industrial Biotechnology (NGIB), is promising for the biomanufacturing of not only intracellular bioplastic PHA but also small molecular compound such as ectoine.


Assuntos
Diamino Aminoácidos , Halomonas , Halomonas/genética , Diamino Aminoácidos/genética , Antibacterianos , Biopolímeros
2.
Metab Eng ; 81: 227-237, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072357

RESUMO

5-Aminovaleric acid (5-AVA), 5-hydroxyvalerate (5HV), copolymer P(3HB-co-5HV) of 3-hydroxybutyrate (3HB) and 5HV were produced from L-lysine as a substrate by recombinant Halomonas bluephagenesis constructed based on codon optimization, deletions of competitive pathway and L-lysine export protein, and three copies of davBA genes encoding L-lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) inserted into its genome to form H. bluephagenesis YF117ΔgabT1+2, which produced 16.4 g L-1 and 67.4 g L-1 5-AVA in flask cultures and in 7 L bioreactor, respectively. It was able to de novo synthesize 5-AVA from glucose by L-lysine-overproducing H. bluephagenesis TD226. Corn steep liquor was used instead of yeast extract for cost reduction during the 5-AVA production. Using promoter engineering based on Pporin mutant library for downstream genes, H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC produced 6 g L-1 5HV in shake flask growth, while H. bluephagenesis YF117 harboring pSEVA341-Pporin42-yqhDEC-Pporin278-phaCRE-abfT synthesized 42 wt% P(3HB-co-4.8 mol% 5HV) under the same condition. Thus, H. bluephagenesis was successfully engineered to produce 5-AVA and 5HV in supernatant and intracellular P(3HB-co-5HV) utilizing L-lysine as the substrate.


Assuntos
Halomonas , Engenharia Metabólica , Lisina/genética , Lisina/metabolismo , Halomonas/genética , Halomonas/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Poliésteres/metabolismo , Porinas/genética , Porinas/metabolismo
3.
Metab Eng ; 81: 249-261, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159902

RESUMO

Predictability and robustness are challenges for bioproduction because of the unstable intracellular synthetic activities. With the deeper understanding of the gene expression process, fine-tuning has become a meaningful tool for biosynthesis optimization. This study characterized several gene expression elements and constructed a multiple inducible system that responds to ten different small chemical inducers in halophile bacterium Halomonas bluephagenesis. Genome insertion of regulators was conducted for the purpose of gene cluster stabilization and regulatory plasmid simplification. Additionally, dynamic ranges of the multiple inducible systems were tuned by promoter sequence mutations to achieve diverse scopes for high-resolution gene expression control. The multiple inducible system was successfully employed to precisely control chromoprotein expression, lycopene and poly-3-hydroxybutyrate (PHB) biosynthesis, resulting in colorful bacterial pictures, optimized cell growth, lycopene and PHB accumulation. This study demonstrates a desirable approach for fine-tuning of rational and efficient gene expressions, displaying the significance for metabolic pathway optimization.


Assuntos
Halomonas , Poliésteres , Poliésteres/metabolismo , Halomonas/genética , Halomonas/metabolismo , Licopeno/metabolismo , Biotecnologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Metabólica/métodos
4.
BJU Int ; 134(1): 72-80, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38459675

RESUMO

OBJECTIVES: To investigate the ability of propolis-coated ureteric stents to solve complications, especially urinary tract infections (UTIs) and crusting, in patients with long-term indwelling ureteric stents through antimicrobial and anti-calculus activities. MATERIALS AND METHODS: Polyurethane (PU) ureteric stents were immersed in the ethanol extract of propolis (EEP), a well-known antimicrobial honeybee product, and subjected to chemical, hydrophilic, and seismic tests. The antimicrobial activity of the EEP coating was then examined by in vitro investigation. Proteus mirabilis infection was induced in rats within uncoated and EEP-coated groups, and the infection, stone formation, and inflammation were monitored at various time points. RESULTS: The characterisation results showed that the hydrophilicity and stability of the EEP surface improved. In vitro tests revealed that the EEP coating was biocompatible, could eliminate >90% of bacteria biofilms attached to the stent and could maintain bacteriostatic properties for up to 3 months. The in vivo experiment revealed that the EEP-coating significantly reduced the amount of bacteria, stones, and salt deposits on the surface of the ureteric stents and decreased inflammation in the host tissue. CONCLUSIONS: Compared with clinically used PU stents, EEP-coated ureteric stents could better mitigate infections and prevent encrustation. Thus, this study demonstrated that propolis is a promising natural dressing material for ureteric stents.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis , Própole , Stents , Ureter , Animais , Ratos , Própole/farmacologia , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Proteus mirabilis/efeitos dos fármacos , Masculino , Infecções Urinárias/prevenção & controle , Ratos Sprague-Dawley , Biofilmes/efeitos dos fármacos , Infecções por Proteus/prevenção & controle , Poliuretanos
5.
Metab Eng ; 79: 146-158, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543135

RESUMO

Halophilic Halomonas bluephagenesis has been engineered to produce various added-value bio-compounds with reduced costs. However, the salt-stress regulatory mechanism remained unclear. H. bluephagenesis was randomly mutated to obtain low-salt growing mutants via atmospheric and room temperature plasma (ARTP). The resulted H. bluephagenesis TDH4A1B5 was constructed with the chromosomal integration of polyhydroxyalkanoates (PHA) synthesis operon phaCAB and deletion of phaP1 gene encoding PHA synthesis associated protein phasin, forming H. bluephagenesis TDH4A1B5P, which led to increased production of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-4-hydrobutyrate) (P34HB) by over 1.4-fold. H. bluephagenesis TDH4A1B5P also enhanced production of ectoine and threonine by 50% and 77%, respectively. A total 101 genes related to salinity tolerance was identified and verified via comparative genomic analysis among four ARTP mutated H. bluephagenesis strains. Recombinant H. bluephagenesis TDH4A1B5P was further engineered for PHA production utilizing sodium acetate or gluconate as sole carbon source. Over 33% cost reduction of PHA production could be achieved using recombinant H. bluephagenesis TDH4A1B5P. This study successfully developed a low-salt tolerant chassis H. bluephagenesis TDH4A1B5P and revealed salt-stress related genes of halophilic host strains.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Análise Custo-Benefício , Ácido 3-Hidroxibutírico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Poliésteres/metabolismo
6.
Metab Eng ; 77: 12-20, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889504

RESUMO

Food wastes can be hydrolyzed into soluble microbial substrates, contributing to sustainability. Halomonas spp.-based Next Generation Industrial Biotechnology (NGIB) allows open, unsterile fermentation, eliminating the need for sterilization to avoid the Maillard reaction that negatively affects cell growth. This is especially important for food waste hydrolysates, which have a high nutrient content but are unstable due to batch, sources, or storage conditions. These make them unsuitable for polyhydroxyalkanoate (PHA) production, which usually requires limitation on either nitrogen, phosphorous, or sulfur. In this study, H. bluephagenesis was constructed by overexpressing the PHA synthesis operon phaCABCn (cloned from Cupriavidus necator) controlled by the essential gene ompW (encoding outer membrane protein W) promoter and the constitutive porin promoter that are continuously expressed at high levels throughout the cell growth process, allowing poly(3-hydroxybutyrate) (PHB) production to proceed in nutrient-rich (also nitrogen-rich) food waste hydrolysates of various sources. The recombinant H. bluephagenesis termed WZY278 generated 22 g L-1 cell dry weight (CDW) containing 80 wt% PHB when cultured in food waste hydrolysates in shake flasks, and it was grown to 70 g L-1 CDW containing 80 wt% PHB in a 7-L bioreactor via fed-batch cultivation. Thus, unsterilizable food waste hydrolysates can become nutrient-rich substrates for PHB production by H. bluephagenesis able to be grown contamination-free under open conditions.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Eliminação de Resíduos , Poliésteres/metabolismo , Halomonas/metabolismo , Alimentos , Genes Essenciais , Poli-Hidroxialcanoatos/genética , Poli-Hidroxialcanoatos/metabolismo , Hidroxibutiratos/metabolismo
7.
Metab Eng ; 72: 275-288, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35429676

RESUMO

Polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible plastics with potential to replace petroleum based plastics. Diversity of PHA monomer structures provides flexibility in material properties to suit more applications. In this study, 5-hydroxyvalerate (5HV) synthesis pathway was established based on intrinsic alcohol/aldehyde dehydrogenases. The PHA polymerase cloned from Cupriavidus necator functions to polymerize 5HV into its copolymers in ratios ranging from 8% to 32%. Elastic copolymer P(85% 3HB-co-15% 5HV) was generated with an elongation at break and a Young's modulus of 1283% and 73.1 MPa, respectively. The recombinant H. bluephagenesis was able to convert various diols including 1, 3-propanediol, 1, 4-butanediol and 1, 5-pentanediol into PHA, leading to 13 PHA polymers including transparent P(53% 3HB-co-20% 4HB-co-27% 5HV) and sticky P(3HB-co-3HP-co-4HB-co-5HV). The engineered H. bluephagenesis was successfully grown in a 7-L bioreactor to produce the highly elastic P(85% 3HB-co-15% 5HV) and the sticky P(3HB-co-3HP-co-4HB-co-5HV), demonstrating their potential for industrial scale-up.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Halomonas/genética , Halomonas/metabolismo , Hidroxibutiratos/metabolismo , Plásticos/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/genética , Poli-Hidroxialcanoatos/metabolismo
8.
Metab Eng ; 72: 325-336, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35513297

RESUMO

Ligand-induced system plays an important role for microbial engineering due to its tunable gene expression control over timings and levels. An oleic acid (OA)-induced system was recently constructed based on protein FadR, a transcriptional regulator involved in fatty acids metabolism, for metabolic control in Escherichia coli. In this study, we constructed a synthetic FadR-based OA-induced systems in Halomonas bluephagenesis by hybridizing the porin promoter core region and FadR-binding operator (fadO). The dynamic control range was optimized over 150-fold, and expression leakage was significantly reduced by tuning FadR expression and positioning fadO, forming a series of OA-induced systems with various expression strengths, respectively. Additionally, ligand orthogonality and cross-species portability were also studied and showed highly linear correlation among Halomonas spp., Escherichia coli and Pseudomonas spp. Finally, OA-induced systems with medium- and small-dynamic control ranges were employed to dynamically control the expression levels of morphology associated gene minCD, and monomer precursor 4-hydroxybutyrate-CoA (4HB-CoA) synthesis pathway for polyhydroxyalkanoates (PHA), respectively, in the presence of oleic acid as an inducer. As a result, over 10 g/L of poly-3-hydroxybutyrate (PHB) accumulated by elongated cell sizes, and 6 g/L of P(3HB-co-9.57 mol% 4HB) were obtained by controlling the dose and induction time of oleic acid only. This study provides a systematic approach for ligand-induced system engineering, and demonstrates an alternative genetic tool for dynamic control of industrial biotechnology.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Coenzima A/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Halomonas/genética , Halomonas/metabolismo , Ligantes , Engenharia Metabólica , Ácido Oleico/metabolismo , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/genética , Pseudomonas/genética , Pseudomonas/metabolismo
9.
Biomacromolecules ; 23(10): 4153-4166, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35786865

RESUMO

Polyhydroxyalkanoates (PHAs) are microbial polyesters that have the potential to replace nonbiodegradable petroplastics. A real-time in situ PHA quantification method has long been awaited to replace the traditional method, which is time- and labor-consuming. Quantification of PHA in living cells was finally developed from fluorescence intensities generated from the green fluorescence protein (GFP) fused with the Halomonas bluephagenesis phasin proteins. Phasins PhaP1 and PhaP2 were used to fuse with GFP, which reflected PHA accumulation with an R-square of over 0.9. Also, a standard correlation was established to calculate PHA contents based on the fluorescence and cell density recorded via a microplate reader with an R-square of over 0.95 when grown on various substrates. The PhaP2-GFP containing H. bluephagenesis was applied successfully to quantify PHA synthesis in a 7.5 L fermenter with high precision. Moreover, the method was found to be feasible in non-natural PHA producers such as Escherichia coli, demonstrating its broad applicability.


Assuntos
Poli-Hidroxialcanoatos , Proteínas de Bactérias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Lectinas de Plantas , Poliésteres/metabolismo , Poli-Hidroxialcanoatos/metabolismo
10.
Metab Eng ; 67: 53-66, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34098101

RESUMO

Bacterial outer membrane (OM), an asymmetric lipid bilayer functioning as a self-protective barrier with reduced permeability for Gram-negative bacteria, yet wasting nutrients and energy to synthesize, has not been studied for its effect on bioproduction. Here we construct several OM-defected halophile Halomonas bluephagenesis strains to investigate the effects of OM on bioproduction. We achieve enhanced chassis properties of H. bluephagenesis based on positive cellular properties among several OM-defected strains. The OM-defected H. bluephagenesis WZY09 demonstrates better adaptation to lower salinity, increasing 28%, 30% and 12% on dry cell mass (DCM), poly(3-hydroxybutyrate) (PHB) accumulation and glucose to PHB conversion rate, respectively, including enlarged cell sizes and 21-folds reduced endotoxin. Interestingly, a poly(3-hydroxybutyrate-co-21mol%4-hydroxybutyrate) (P(3HB-co-21mol%4HB)) is produced by H. bluephagenesis WZY09 derivate WZY249, increasing 60% and 260% on polyhydroxyalkanoate (PHA) production and 4HB content, respectively. Furthermore, increased electroporation efficiency, more sensitive isopropyl ß-D-1-thio-galactopyranoside (IPTG) induction, better oxygen uptake, enhanced antibiotics sensitivity and ectoine secretion due to better membrane permeability are observed if OM defected, demonstrating significant OM defection impacts for further metabolic engineering, synthetic biology studies and industrial applications.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Ácido 3-Hidroxibutírico , Halomonas/genética , Hidroxibutiratos , Engenharia Metabólica , Permeabilidade , Poliésteres
11.
J Med Virol ; 93(11): 6172-6179, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34061379

RESUMO

Hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) is a contagious viral disease, and toll-like receptors (TLRs) play essential roles in resisting the pathogen. The aim of this study was to assess the potential relationship between several TLRs polymorphisms and the HFMD severity in a Chinese children population. A total of 328 Chinese children with HFMD were included in the present study. The polymorphisms of TLR3 (rs3775290, rs3775291, rs3775296, rs1879026, rs5743312, rs5743313, rs5743303, rs13126816, and rs3775292), TLR4 (rs4986790, rs4986791, rs2149356, rs11536889, and rs41426344), TLR7 (rs179009, rs179010, rs179016, rs3853839, rs2302267, rs1634323, and rs5741880), and TLR8 (rs3764880, rs2159377, rs2407992, rs5744080, rs3747414, rs3764879, and rs5744069) genes were selected. The study indicated that individuals with the GG genotype of TLR3 single-nucleotide polymorphism rs1879026 had a higher risk of developing severe cases (GG vs. GT: OR = 1.875; 95% CI, 1.183-2.971; p = .007). Meanwhile, TLR3 rs3775290 CC genotype and C allele were associated with lower disease severity in females (CC vs. CT: OR = 0.350; 95% CI, 0.163-0.751; p = .006; C vs. T: OR = 0.566; 95% CI, 0.332-0.965; p = .036). TLR3 rs3775291 CC genotype showed 2.537 folds higher risk of developing severe cases in females (CC vs. CT: OR = 2.537; 95% CI, 1.108-5.806; p = .026). Moreover, TLR3 rs1879026 GG genotype was found to be related to increased risk of severe cases in males (GG vs. GT: OR = 2.076; 95% CI, 1.144-3.768; p = .016). The current findings show that the genetic variants of TLR3 rs1879026, rs3775290, and rs3775291 are associated with the severity of EV-A71-associated HFMD in a Chinese children population.


Assuntos
Enterovirus Humano A , Predisposição Genética para Doença , Doença de Mão, Pé e Boca/genética , Polimorfismo de Nucleotídeo Único , Receptor 3 Toll-Like/genética , Alelos , Povo Asiático/genética , Estudos de Casos e Controles , Pré-Escolar , China , Feminino , Doença de Mão, Pé e Boca/patologia , Doença de Mão, Pé e Boca/virologia , Humanos , Lactente , Recém-Nascido , Masculino
12.
Mar Drugs ; 19(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208474

RESUMO

Some commonly used surfactants in cosmetic products raise concerns due to their skin-irritating effects and environmental contamination. Multifunctional, high-performance polymers are good alternatives to overcome these problems. In this study, agarose stearate (AS) with emulsifying, thickening, and gel properties was synthesized. Surfactant-free cosmetic formulations were successfully prepared from AS and carbomer940 (CBM940) mixed systems. The correlation of rheological parameter with skin feeling was determined to study the usability of the mixed systems in cosmetics. Based on rheological analysis, the surfactant-free cosmetic cream (SFC) stabilized by AS-carbomer940 showed shear-thinning behavior and strongly synergistic action. The SFC exhibited a gel-like behavior and had rheological properties similar to commercial cosmetic creams. Scanning electron microscope images proved that the AS-CBM940 network played an important role in SFC's stability. Oil content could reinforce the elastic characteristics of the AS-CBM940 matrix. The SFCs showed a good appearance and sensation during and after rubbing into skin. The knowledge gained from this study may be useful for designing surfactant-free cosmetic cream with rheological properties that can be tailored for particular commercial cosmetic applications. They may also be useful for producing medicine products with highly viscous or gel-like textures, such as some ointments and wound dressings.


Assuntos
Resinas Acrílicas/síntese química , Cosméticos/síntese química , Excipientes/síntese química , Sefarose/análogos & derivados , Substâncias Viscoelásticas/síntese química , Resinas Acrílicas/química , Cosméticos/química , Excipientes/química , Géis , Humanos , Microscopia Eletrônica de Varredura , Reologia , Sefarose/síntese química , Sefarose/química , Creme para a Pele/síntese química , Creme para a Pele/química , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos , Substâncias Viscoelásticas/química
13.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203179

RESUMO

In this study, a polydopamine (PDA)-modified hollow fiber-immobilized xanthine oxidase (XOD) was prepared for screening potential XOD inhibitors from flavonoids. Several parameters for the preparation of PDA-modified hollow fiber-immobilized XOD, including the dopamine concentration, modification time, XOD concentration and immobilization time, were optimized. The results show that the optimal conditions for immobilized XOD activity were a dopamine concentration of 2.0 mg/mL in 10.0 mM Tris-HCl buffer (pH 8.5), a modification time of 3.0 h, an XOD concentration of 1000 µg/mL in 10.0 mM phosphate buffer (pH 7.5) and an immobilization time of 3.0 h. Subsequently, the enzymatic reaction conditions such as the pH value and temperature were investigated, and the enzyme kinetics and inhibition parameters were determined. The results indicate that the optimal pH value (7.5) and temperature (37 °C) of the PDA-modified hollow fiber-immobilized XOD were consistent with the free enzyme. Moreover, the PDA-modified hollow fiber-immobilized XOD could still maintain above 50% of its initial immobilized enzyme activity after seven consecutive cycles. The Michaelis-Menten constant (Km) and the half-maximal inhibitory concentration (IC50) of allopurinol on the immobilized XOD were determined as 0.25 mM and 23.2 µM, respectively. Furthermore, the PDA-modified hollow fiber-immobilized XOD was successfully applied to evaluate the inhibitory activity of eight flavonoids. Quercetin, apigenin, puerarin and epigallocatechin showed a good inhibition effect, and their percentages of inhibition were (79.86 ± 3.50)%, (80.98 ± 0.64)%, (61.15 ± 6.26)% and (54.92 ± 0.41)%, respectively. Finally, molecular docking analysis further verified that these four active compounds could bind to the amino acid residues in the XOD active site. In summary, the PDA-modified hollow fiber-immobilized XOD is an efficient method for the primary screening of XOD inhibitors from natural products.


Assuntos
Inibidores Enzimáticos/química , Enzimas Imobilizadas , Flavonoides/química , Indóis/química , Polímeros/química , Xantina Oxidase , Enzimas Imobilizadas/antagonistas & inibidores , Enzimas Imobilizadas/química , Simulação de Acoplamento Molecular , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/química
14.
Mol Pharm ; 17(1): 229-238, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31765158

RESUMO

Eukaryotic translation initiation factors 3i (eIF3i) is a proto-oncogene that is overexpressed in various tumors, reducing its expression by eIF3i shRNA is a promising strategy to inhibit tumor growth or metastasis. Tumor cell is the target of eIF3i shRNA so that tumor-site accumulation could be important for fulfilling its therapeutic effect. Thus, the iRGD modified liposome (R-LP) was rationally synthesized to enhance the antitumor effect by active targeted delivery of eIF3i shRNA to B16F10 melanoma cells. R-LP encapsulating eIF3i shRNA gene (R-LP/sheIF3i) were prepared by a film dispersion method. The transfection experiment proves that R-LP could effectively transfect B16F10 cells. R-LP/sheIF3i notably restrained the migration, invasion, and adhesion of melanoma cells in vitro. In a mouse model of lung metastasis, R-LP/sheIF3i administered by intravenous injection suppressed pulmonary metastasis of melanoma by dramatically downregulated eIF3i expression and subsequently inhibiting tumor neovascularization and tumor cells proliferation in vivo. Our results provide a basis for tumor cells targeting strategies to reduce the expression of eIF3i by RNAi in the treatment of tumor metastasis.


Assuntos
Fator de Iniciação 3 em Eucariotos/genética , Terapia Genética , Neoplasias Pulmonares/secundário , Melanoma Experimental/secundário , Melanoma Experimental/terapia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Lipossomos/química , Lipossomos/ultraestrutura , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Masculino , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Neovascularização Patológica/genética , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , RNA Interferente Pequeno , Transfecção , Transplante Homólogo
15.
Ann Plast Surg ; 84(3): 322-327, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31688114

RESUMO

BACKGROUND: This study aimed to introduce a novel approach to study the facial mimetic muscles (FMMs) related to the nasolabial fold (NLF) and realize the visualization of complex 3-dimensional (3D) structures of the FMM. METHODS: Micro-computed tomography (micro-CT) and iodine staining technique were used to obtain the 2-dimensional radiographs of the FMM. Materialise Mimics software was then used to reconstruct the 3D model of the FMM. RESULTS: The zygomaticus major muscle was not directly connected to the orbicularis oris muscle (OOM). The terminal fibers of the zygomaticus major muscle were located in the levator anguli oris. The surface of the FMM was covered with some unknown muscle fibers in the NLF. The terminal fibers of the zygolabialis ended in the middle of the ipsilateral OOM rather than the edge of the OOM. At the same anatomical level, the FMM fibers were so closely connected to each other that they were not separated by adipose tissue. A detailed 3D sequence of the muscle fibers in the modiolus at the corner of the mouth was determined. The muscle fibers in the modiolus were organized rather than disorganized. The terminal fibers of the levator anguli oris were located at the terminal fibers of the musculus depressor anguli oris at the corner of mouth. CONCLUSIONS: Although the micro-CT had many disadvantages, the micro-CT combined with iodine staining technique enabled the 3D anatomical study of the FMM related to NLF. We imported the 2-dimensional images obtained by micro-CT scanning into Mimics software, successfully reconstructed the FMM related to the NLF, and finally obtained images of complex 3D structures of the FMM related to the NLF. The shapes, positions, and 3D spatial relationships between the FMM related to the NLF were clearly visualized. The novel insights into the 3D anatomy of the FMM related to NLF may help understand the formation of the NLF. Finally, the results of this study may help improve rejuvenation surgery of the NLF in the near future.


Assuntos
Músculos Faciais/anatomia & histologia , Músculos Faciais/diagnóstico por imagem , Sulco Nasogeniano/anatomia & histologia , Sulco Nasogeniano/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Humanos , Coloração e Rotulagem/métodos
16.
Aesthetic Plast Surg ; 44(1): 80-86, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31535170

RESUMO

PURPOSE: This study aimed to introduce a novel approach to study the facial mimetic muscles (FMMs) in relation to the nasolabial fold (NLF) and realize the visualization of complex three-dimensional (3D) structures and spatial relationships of the FMMs. MATERIALS AND METHODS: Nano-computed tomography (nano-CT) and iodine staining techniques were used to obtain the two-dimensional (2D) radiographs of the FMMs. Materialise Mimics software was then used to reconstruct the 3D model of the FMMs. RESULTS: The zygomaticus major muscle (ZMM) was divided into trunk fibers and branch fibers. The trunk fibers of the ZMM were subdivided into branch fibers layer-by-layer. Adipose tissue in the cheek was not a mass of unorganized fat. It was separated and fixed by branch fibers. Moreover, the trunk fibers of the ZMM were directly connected to the levator anguli oris (LAO), not the skin. On the contrary, the ZMM was connected to the skin by its subdivided branch fibers indirectly. The muscle fibers in the modiolus were organized, rather than disorganized. In other words, the terminal of the trunk fibers of the ZMM was located in the LAO. Moreover, the terminal of the trunk fibers of the LAO was located at the terminal of the trunk fibers of the musculus depressor anguli oris at the corner of the mouth. Furthermore, the levator labii superioris alaeque nasi was not directly connected to the orbicularis oris muscle. It was connected to the combination of the LLS and the rhinaeus. CONCLUSIONS: Although nano-CT has many disadvantages, it enabled the 3D anatomical study of the FMMs in relation to the NLF when combined with iodine staining. We imported the 2D images obtained by nano-CT scanning into the Mimics software, successfully reconstructed the FMMs, and finally obtained images of complex 3D structures of the FMMs. The shapes, positions, and 3D spatial relationships of the FMMs were clearly visualized. The novel insights into the 3D anatomy of the FMMs may help understand the formation of the NLF. Finally, the results of this study may help improve the rejuvenation surgery of the NLF soon. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Assuntos
Iodo , Sulco Nasogeniano , Músculos Faciais/diagnóstico por imagem , Humanos , Lábio , Sulco Nasogeniano/diagnóstico por imagem , Coloração e Rotulagem
17.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158074

RESUMO

Phenol red (PR) is a widely used marker for water flux correction in studies of in situ perfusion, in which intestinal absorption usually leads to the underestimation of results. In this paper, we propose a novel marker polyethylene glycol (PEG)-PR (i.e., PR modified by PEGylation) with less permeability and evaluate its application in an in situ perfusion model in rats. PEG-PR was synthesized by the chemical conjunction of polyethylene glycol-4k/5k (PEG-4k/5k) and PR. The synthesized PEG-PR was then characterized using 1H-NMR, 13C-NMR, ultraviolet (UV), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analyses. The low permeability of PEG-PR was assessed using everted gut sac (EGS) methods. The apparent permeability coefficients (Papp, 3-8 × 10-7 cm/s) of PEG4k/5k-PR exhibited a nearly 15-fold reduction compared to that of PR. The different concentrations of PEG4k/5k-PR did not contribute to the Papp value or cumulative permeable percentage (about 0.02-0.06%). Furthermore, the larger molecular weight due to PEGylation (PEG5k-PR) enhanced the nonabsorbable effect. To evaluate the potential application of the novel marker, atenolol, ketoprofen, and metoprolol, which represent various biopharmaceutics classification system (BCS) classes, were selected as model drugs for the recirculation perfusion method. The water flux corrected by PEG4k/5k-PR reflected the accuracy due to the nonabsorbable effect, while the effective intestinal membrane permeability (Peff) of atenolol corrected by PEG4k/5k-PR showed a statistically significant increase (p < 0.05) in different intestinal segments. In conclusion, PEG-PR is a promising marker for the permeability estimation when using the in situ perfusion model in rats.


Assuntos
Absorção Intestinal , Modelos Biológicos , Fenolsulfonaftaleína , Polietilenoglicóis , Água/metabolismo , Animais , Avaliação de Medicamentos , Masculino , Perfusão , Permeabilidade , Fenolsulfonaftaleína/química , Fenolsulfonaftaleína/farmacocinética , Fenolsulfonaftaleína/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Ratos , Ratos Wistar
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(6): 735-741, 2020 Nov.
Artigo em Zh | MEDLINE | ID: mdl-33236593

RESUMO

OBEJECTIVE: To investigate the role of a novel chemically defined medium (CDM) in the regulation of dental papilla cells (DPCs) functional phenotype in vitro and periodontal bone regeneration in vivo. METHODS: DPCs were isolated and cultured in conventional medium (CM) or CDM. The surface makers, and the proliferation, migration and osteogenic differentiation abilities of DPCs were evaluated. In vivo, the DPCs that mixed with collagen gel were implanted into the model rats in the defect of periodontal to repair the periodontal tissue. Regeneration of the tissues was examined by microcomputed tomography and histological observation. RESULTS: DPCs in the CM group and CDM group showed similar surface markers. Compared to the CM group, the CDM significantly enhanced the proliferation, colony-forming efficiency and migration of DPCs in vitro. In addition, real time PCR showed that the expression levels of osteogenesis-related genes, Runx2, Alp and Opn. were significantly enhanced in DPCs in the CDM group. DPCs cells treated with CDM also exhibited higher alkaline phosphatase activity and stronger ability of formation of mineralized nodules in vitro. In vivo, DPCs from CDM group significantly enhanced the periodontal bone regeneration and the reconstruction of periodontal bone tissues in rat periodontal defect model. CONCLUSION: CDM is a suitable medium to culture DPCs for periodontal bone regeneration. This research provided a substitute for basic research and set the stage for future clinical application of stem cell transplantation.


Assuntos
Osteogênese , Ligamento Periodontal , Animais , Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Papila Dentária , Ratos , Regeneração , Microtomografia por Raio-X
19.
Angew Chem Int Ed Engl ; 59(9): 3658-3664, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31868285

RESUMO

With the ever-increasing threat posed by the multi-drug resistance of bacteria, the development of non-antibiotic agents for the broad-spectrum eradication of clinically prevalent superbugs remains a global challenge. Here, we demonstrate the simple supramolecular self-assembly of structurally defined graphene nanoribbons (GNRs) with a cationic porphyrin (Pp4N) to afford unique one-dimensional wire-like GNR superstructures coated with Pp4N nanoparticles. This Pp4N/GNR nanocomposite displays excellent dual-modal properties with significant reactive-oxygen-species (ROS) production (in photodynamic therapy) and temperature elevation (in photothermal therapy) upon light irradiation at 660 and 808 nm, respectively. This combined approach proved synergistic, providing an impressive antimicrobial effect that led to the complete annihilation of a wide spectrum of Gram-positive, Gram-negative, and drug-resistant bacteria both in vitro and in vivo. The study also unveils the promise of GNRs as a new platform to develop dual-modal antimicrobial agents that are able to overcome antibiotic resistance.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Luz , Nanocompostos/química , Anti-Infecciosos/química , Bactérias Gram-Negativas/efeitos dos fármacos , Grafite/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanocompostos/toxicidade , Nanotubos/química , Polietilenoglicóis/química , Porfirinas/química , Espécies Reativas de Oxigênio/metabolismo
20.
Metab Eng ; 52: 253-262, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30582985

RESUMO

Polyhydroxyalkanoates (PHA) composed of both short-chain-length (SCL) and medium-chain-length (MCL) monomers (SCL-co-MCL PHA) combine the advantages of high strength and elasticity provided by SCL PHA and MCL PHA, respectively. Synthesis of SCL-co-MCL PHA, namely, copolymers of 3-hydroxybutyrate (3HB) and MCL 3-hydroxyalkanoates (3HA) such as 3-hydroxydecanoate (3HD) and longer chain 3HA, has been a challenge for a long time. This study aims to engineer Pseudomonas entomophila for synthesizing P(3HB-co-MCL 3HA) via weakening its ß-oxidation pathway combined with insertion of 3HB synthesis pathway consisting of ß-ketothiolase (phaA) and acetoacetyl-CoA reductase (phaB). 3HB and MCL 3HA polymerization is catalyzed by a low specificity PHA synthase (phaC), namely, mutated PhaC61-3. The link between the fatty acid de novo synthesis and PHA synthesis was further blocked to increase the supply for SCL and MCL monomers in P. entomophila. The so-constructed P. entomophila was successfully used to synthesize novel PHA copolymers of P(3HB-co-3HD), P(3HB-co-3HDD) and P(3HB-co-3H9D) consisting of 3HB and 3-hydroxydecanoate (3HD), 3-hydroxydodecanoate (3HDD) and 3-hydroxy-9-decanent (3H9D), respectively. MCL 3HA compositions of P(3HB-co-3HD) and P(3HB-co-3HDD) can be adjusted from 0 to approximate 100 mol%. Results demonstrated that the engineered P. entomophila could be a platform for tailor-made P(3HB-co-MCL 3HA).


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Engenharia Metabólica/métodos , Poli-Hidroxialcanoatos/metabolismo , Polímeros/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Técnicas de Inativação de Genes , Peso Molecular , Oxirredução , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA