Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(7): 279, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37391671

RESUMO

A novel chiral molecularly imprinted polymer TiO2 nanoparticle was synthesized in one step for the enantioseparation of phenylalanine in coated capillary electrochromatography. To the author's knowledge, the chiral molecularly imprinted nanomaterials have still not been reported, to date. Chiral molecularly imprinted TiO2 nanomaterials (L-PHE@MIP(APTES-TEOS)@TiO2) were used as a chiral stationary phase to separate the phenylalanine enantiomers in coated capillary electrochromatography (CEC). The imprinted coating was prepared from L-phenylalanine (L-PHE) as the template, TiO2 nanoparticles (NPs) as the support substrate, 3-aminopropyltriethoxysilane (APTES) as the functional monomer, and tetraethyl silicate (TEOS) as the cross-linker. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for the characterization of the L-PHE@MIP(APTES-TEOS)@TiO2@capillary. Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) were employed for the characterization of the L-PHE@MIP(APTES-TEOS)@TiO2. The effects of the applied voltage, pH value, buffer concentration, and acetonitrile content were investigated  experimentally to determine the optimum conditions for CEC. The best resolution for  phenylalanine enantiomers by CEC reached a value of 3.48. In addition, the specific recognition effect of L-PHE@MIP(APTES-TEOS)@TiO2 on PHE enantiomers was studied by selective experiment. Finally, adsorption kinetic research, adsorption equilibrium isotherm study, and adsorption thermodynamic experiment were carried out to investigate the separation mechanism of PHE enantiomers with the L-PHE@MIP (APTES-TEOS)@TiO2@capillary, and the results were consistent with those of CEC experiments.


Assuntos
Eletrocromatografia Capilar , Nanopartículas , Polímeros Molecularmente Impressos , Espectroscopia de Infravermelho com Transformada de Fourier , Fenilalanina
2.
Front Bioeng Biotechnol ; 10: 1023032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324887

RESUMO

Titanium (Ti) implants have been widely used for the treatment of tooth loss due to their excellent biocompatibility and mechanical properties. However, modifying the biological properties of these implants to increase osteointegration remains a research challenge. Additionally, the continuous release of various metal ions in the oral microenvironment due to fluid corrosion can also lead to implant failure. Therefore, simultaneously improving the bioactivity and corrosion resistance of Ti-based materials is an urgent need. In recent decades, micro-arc oxidation (MAO) has been proposed as a surface modification technology to form a surface protective oxide layer and improve the comprehensive properties of Ti. The present study doped nano silicon nitride (Si3N4) particles into the Ti surface by MAO treatment to improve its corrosion resistance and provide excellent osteoinduction by enhancing alkaline phosphatase activity and osteogenic-related gene expression. In addition, due to the presence of silicon, the Si3N4-doped materials showed excellent angiogenesis properties, including the promotion of cell migration and tubule formation, which play essential roles in early recovery after implantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA