Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 31(48): 13094-100, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26548328

RESUMO

Here we present the generation of uniform microparticles with tunable diameters from azobenzene-based homopolymer by combining the microfluidics technique and emulsion-solvent evaporation route. In addition, the photoinduced deformation behavior of these microspheres, irradiated by a linearly polarized beam with different irradiation time and direction, are systemically studied. The deformation process through real time optical microscope observation can be investigated, benefiting from the uniform and microscaled size of the polymer particles. These results indicate that the deformation degree characterized by relative variation of the long axial for the particles can be controlled by the irradiation time. Moreover, elongated particles with tunable aspect ratio or tilted shape can be generated by manipulating the irradiation direction and/or time. Interestingly, the shape transformation kinetics displays a significant dependence on initial size of the polymer particle. In addition, the shape transformation of the polymer particle can lead to the variation of the orientation and distribution of the encapsulated anisotropic gold nanorods.


Assuntos
Compostos Azo/química , Microesferas , Polímeros/química
2.
Acta Biomater ; 136: 456-472, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562660

RESUMO

The synergistic manipulation of autophagy blocking with tumor targeting and penetration effects to enhance cancer cell killing during photothermal therapy (PTT) remains a substantial challenge. Herein, we fabricated a biomimetic nanoplatform by precisely coating homologous prostate cancer cell membranes (CMs) onto the surface of mesoporous polydopamine nanoparticles (mPDA NPs) encapsulating the autophagy inhibitor chloroquine (CQ) for synergistically manipulating PTT and autophagy for anticancer treatment. The resulting biomimetic mPDA@CMs NPs-CQ system could escape macrophage phagocytosis, overcome the vascular barrier, and home in the homologous prostate tumor xenograft with high tumor targeting and penetrating efficiency. The mPDA NPs core endowed the mPDA@CMs NPs-CQ with good photothermal capability to mediate PTT killing of prostate cancer cells, while NIR-triggered CQ release from the nanosystem further arrested PTT-induced protective autophagy of cancer cells, thus weakening the resistance of prostate cancer cells to PTT. This combined PTT killing and autophagy blocking anticancer strategy could induce significant autophagosome accumulation, ROS generation, mitochondrial damage, endoplasmic reticulum stress, and apoptotic signal transduction, which finally results in synergistic prostate tumor ablation in vivo. This prostate cancer biomimetic nanosystem with synergistically enhanced anticancer efficiency achieved by manipulating PTT killing and autophagy blocking is expected to serve as a more effective anticancer strategy against prostate cancer. STATEMENT OF SIGNIFICANCE: Autophagy is considered as one of the most efficient rescuer and reinforcement mechanisms of cancer cells against photothermal therapy (PTT)-induced cancer cell eradication. How to synergistically manipulate autophagy blocking with significant tumor targeting and penetration to enhance PTT-mediated cancer cell killing remains a substantial challenge. Herein, we fabricated a biomimetic nanoplatform by precisely coating homologous cancer cell membranes onto the surface of mesoporous polydopamine nanoparticles with encapsulation of the autophagy inhibitor chloroquine for synergistic antitumor treatment with high tumor targeting and penetrating efficiency both in vitro and in vivo. This biomimetic nanosystem with synergistically enhanced anticancer efficiency by manipulating PTT killing and autophagy blocking is expected to serve as a more effective anticancer strategy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Autofagia , Biomimética , Humanos , Indóis , Masculino , Fototerapia , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA