Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38804531

RESUMO

OBJECTIVES: The glow discharge plasma (GDP) procedure has proven efficacy in grafting allylamine onto zirconia dental implant surfaces to enhance osseointegration. This study explored the enhancement of zirconia dental implant properties using GDP at different energy settings (25, 50, 75, 100, and 200 W) both in vitro and in vivo. MATERIALS AND METHODS: In vitro analyses included scanning electron microscopy, wettability assessment, energy-dispersive X-ray spectroscopy, and more. In vivo experiments involved implanting zirconia dental implants into rabbit femurs and later evaluation through impact stability test, micro-CT, and histomorphometric measurements. RESULTS: The results demonstrated that 25 and 50 W GDP allylamine grafting positively impacted MG-63 cell proliferation and increased alkaline phosphatase activity. Gene expression analysis revealed upregulation of OCN, OPG, and COL-I. Both 25 and 50 W GDP allylamine grafting significantly improved zirconia's surface properties (p < .05, p < .01, p < .001). However, only 25 W allylamine grafting with optimal energy settings promoted in vivo osseointegration and new bone formation while preventing bone level loss around the dental implant (p < .05, p < .01, p < .001). CONCLUSIONS: This study presents a promising method for enhancing Zr dental implant surface's bioactivity.

2.
Materials (Basel) ; 13(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859067

RESUMO

Peri-implantitis is the pathological condition of connective tissue inflammation and the progressive loss of supporting bone around dental implants. One of the primary causes of peri mucositis evolving into peri-implantitis is bacterial infection, including infection from Porphyromonas gingivalis. Enhancing the surface smoothness of implants helps to prevent P. gingivalis adhesion to the implant's surface. Interaction analyses between bacteria and the surface roughness of zirconia (Zr) discs subjected to a glow discharge plasma (GDP) treatment compared with non-plasma-treated autoclaved control Zr discs were done. Examinations of the material prosperities revealed that the GDP-treated Zr group had a smoother surface for a better wettability. The GDP-treated Zr discs improved the proliferation of the osteoblast-like cells MG-63, and the osteoblastic differentiation was assessed through alkaline phosphatase detection and marker gene bone sialoprotein (Bsp) and osteocalcin (OC) induction. Scanning electron microscopy demonstrated a relatively low P. gingivalis adhesion on GDP-treated Zr disks, as well as lower colonization of P. gingivalis compared with the control. Our findings confirmed that the GDP treatment of Zr discs resulted in a significant reduction of P. gingivalis adhesion and growth, demonstrating a positive correlation between surface roughness and bacteria adhesion. Therefore, the GDP treatment of Zr dental implants can provide a method for reducing the risk of peri-implantitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA