Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2300582121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190543

RESUMO

Plastics are now omnipresent in our daily lives. The existence of microplastics (1 µm to 5 mm in length) and possibly even nanoplastics (<1 µm) has recently raised health concerns. In particular, nanoplastics are believed to be more toxic since their smaller size renders them much more amenable, compared to microplastics, to enter the human body. However, detecting nanoplastics imposes tremendous analytical challenges on both the nano-level sensitivity and the plastic-identifying specificity, leading to a knowledge gap in this mysterious nanoworld surrounding us. To address these challenges, we developed a hyperspectral stimulated Raman scattering (SRS) imaging platform with an automated plastic identification algorithm that allows micro-nano plastic analysis at the single-particle level with high chemical specificity and throughput. We first validated the sensitivity enhancement of the narrow band of SRS to enable high-speed single nanoplastic detection below 100 nm. We then devised a data-driven spectral matching algorithm to address spectral identification challenges imposed by sensitive narrow-band hyperspectral imaging and achieve robust determination of common plastic polymers. With the established technique, we studied the micro-nano plastics from bottled water as a model system. We successfully detected and identified nanoplastics from major plastic types. Micro-nano plastics concentrations were estimated to be about 2.4 ± 1.3 × 105 particles per liter of bottled water, about 90% of which are nanoplastics. This is orders of magnitude more than the microplastic abundance reported previously in bottled water. High-throughput single-particle counting revealed extraordinary particle heterogeneity and nonorthogonality between plastic composition and morphologies; the resulting multidimensional profiling sheds light on the science of nanoplastics.


Assuntos
Água Potável , Microscopia , Humanos , Microplásticos , Plásticos , Algoritmos
2.
J Nutr ; 141(5): 790-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21430247

RESUMO

Proximal colon epithelial gene responses to diets containing increasing levels of dietary fermentable material (FM) from 2 different sources were measured to determine whether gene expression patterns were independent of the source of FM. Male Fischer 344 rats (10/group) were fed for 6 wk a control diet containing 10% (g/g) cellulose (0% FM); or a 2, 5, or 10% wheat bran (WB) diet (1, 2, 5% FM); or a 2, 5, or 8% fructooligosaccharides (FOS) diet (2, 5, 8% FM). WB and FOS were substituted for cellulose to give a final 10% nondigestible material content including FM. Gene responses were relative to expression in rats fed the control diet. The gene response patterns associated with feeding ∼2% FM (5% WB and 2% FOS) were similar (∼10 gene changes ≥ 1.6-fold; P ≤ 0.01) and involved genes associated with transport (Scnn1g, Mt1a), transcription (Zbtb16, Egr1), immunity (Fkbp5), a gut hormone (Retn1ß), and lipid metabolism (Scd2, Insig1). These changes were also similar to those associated with 5% FM but only in rats fed the 10% WB diet. In contrast, the 5% FOS diet (~5% FM) was associated with 68 gene expression changes ≥ 1.6-fold (P ≤ 0.01). The diet with the highest level of fermentation (8% FOS, ~8% FM) was associated with 132 changes ≥ 1.6-fold (P ≤ 0.01), including genes associated with transport, cellular proliferation, oncogene and tumor metastasis, the cell cycle, apoptosis, signal transduction, transcript regulation, immunity, gut hormones, and lipid metabolic processes. These results show that both the amount and source of FM determine proximal colon epithelial gene response patterns in rats.


Assuntos
Colo/metabolismo , Fibras na Dieta/administração & dosagem , Frutose/administração & dosagem , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Oligossacarídeos/administração & dosagem , Animais , Celulose/administração & dosagem , Celulose/metabolismo , Fibras na Dieta/metabolismo , Frutose/metabolismo , Perfilação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Oligossacarídeos/metabolismo , Especificidade de Órgãos , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA