Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 20(11)2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31151170

RESUMO

Electric field stimulation is known to affect various cellular processes, including cell fate specification and differentiation, particularly towards neuronal lineages. This makes it a promising therapeutic strategy to stimulate regeneration of neuronal tissues. Retinal ganglion cells (RGCs) is a type of neural cells of the retina responsible for transduction of visual signals from the retina to the brain cortex, and is often degenerated in various blindness-causing retinal diseases. The organic photovoltaic materials such as poly-3-hexylthiophene (P3HT) can generate electric current upon illumination with light of the visible spectrum, and possesses several advantageous properties, including light weight, flexibility and high biocompatibility, which makes them a highly promising tool for electric stimulation of cells in vitro and in vivo. In this study, we tested the ability to generate photocurrent by several formulations of blend (bulk heterojunction) of P3HT (which is electron donor material) with several electron acceptor materials, including Alq3 and bis(10-hydroxybenzo[h]quinolinato)beryllium (Bebq2). We found that the photovoltaic device based on bulk heterojunction of P3HT with Bebq2 could generate photocurrent when illuminated by both green laser and visible spectrum light. We tested the growth and differentiation capacity of human induced pluripotent stem cells (hiPSC)-derived RGCs when grown in interface with such photostimulated device, and found that they were significantly increased. The application of P3HT:Bebq2-formulation of photovoltaic device has a great potential for developments in retinal transplantation, nerve repair and tissue engineering approaches of treatment of retinal degeneration.


Assuntos
Técnicas de Cultura de Células , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Compostos Organosselênicos , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Imunofluorescência , Humanos , Compostos Organosselênicos/química , Polímeros , Esferoides Celulares
2.
Int J Mol Sci ; 20(2)2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30634448

RESUMO

Age-related macular degeneration (AMD) is the eye disease with the highest epidemic incidence, and has great impact on the aged population. Wet-type AMD commonly has the feature of neovascularization, which destroys the normal retinal structure and visual function. So far, effective therapy options for rescuing visual function in advanced AMD patients are highly limited, especially in wet-type AMD, in which the retinal pigmented epithelium and Bruch's membrane structure (RPE-BM) are destroyed by abnormal angiogenesis. Anti-VEGF treatment is an effective remedy for the latter type of AMD; however, it is not a curative therapy. Therefore, reconstruction of the complex structure of RPE-BM and controlled release of angiogenesis inhibitors are strongly required for sustained therapy. The major purpose of this study was to develop a dual function biomimetic material, which could mimic the RPE-BM structure and ensure slow release of angiogenesis inhibitor as a novel therapeutic strategy for wet AMD. We herein utilized plasma-modified polydimethylsiloxane (PDMS) sheet to create a biomimetic scaffold mimicking subretinal BM. This dual-surface biomimetic scaffold was coated with laminin and dexamethasone-loaded liposomes. The top surface of PDMS was covalently grafted with laminin and used for cultivation of the retinal pigment epithelial cells differentiated from human induced pluripotent stem cells (hiPSC-RPE). To reach the objective of inhibiting angiogenesis required for treatment of wet AMD, the bottom surface of modified PDMS membrane was further loaded with dexamethasone-containing liposomes via biotin-streptavidin linkage. We demonstrated that hiPSC-RPE cells could proliferate, express normal RPE-specific genes and maintain their phenotype on laminin-coated PDMS membrane, including phagocytosis ability, and secretion of anti-angiogenesis factor PEDF. By using in vitro HUVEC angiogenesis assay, we showed that application of our membrane could suppress oxidative stress-induced angiogenesis, which was manifested in decreased secretion of VEGF by RPE cells and suppression of vascularization. In conclusion, we propose modified biomimetic material for dual delivery of RPE cells and liposome-enveloped dexamethasone, which can be potentially applied for AMD therapy.


Assuntos
Dexametasona/administração & dosagem , Dimetilpolisiloxanos , Células Epiteliais/metabolismo , Lipossomos , Neovascularização Fisiológica/efeitos dos fármacos , Nylons , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Biotina/química , Biotina/metabolismo , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Dimetilpolisiloxanos/química , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Laminina/química , Laminina/metabolismo , Lipossomos/química , Degeneração Macular/terapia , Nylons/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
J Hum Genet ; 56(1): 8-11, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20882036

RESUMO

Nance-Horan syndrome (NHS) is a rare X-linked disorder characterized by congenital cataracts, dental anomalies and mental retardation. The disease has been linked to a novel gene termed NHS located at Xp22.13. The majority of pathogenic mutations of the disease include nonsense mutations and small deletions and insertions that lead to truncation of the NHS protein. In this study, we identified a microdeletion of ∼ 0.92 Mb at Xp22.13 detected by array-based comparative genomic hybridization in two brothers presenting congenital cataract, dental anomalies, facial dysmorphisms and mental retardation. The deleted region encompasses the REPS2, NHS, SCML1 and RAI2 genes, and was transmitted from their carrier mother who presented only mild cataract. Our findings are in line with several recent case reports to indicate that genomic rearrangement involving the NHS gene is an important genetic etiology underlying NHS.


Assuntos
Deleção Cromossômica , Cromossomos Humanos X/genética , Adolescente , Adulto , Catarata/congênito , Catarata/genética , Códon sem Sentido , Família , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Taiwan , Anormalidades Dentárias/genética , Adulto Jovem
4.
J Chin Med Assoc ; 83(11): 1029-1033, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32898088

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is one of the leading causes of vision loss. Once the retinal pigment epithelium (RPE) layers are destroyed, the poor visual acuity and recognition are generally irreversible. Cell therapy that possesses enormous potential in regenerative medicine may provide an alternative treatment for several incurable diseases such as AMD. In this study, we developed an innovative polydimethylsiloxane (PDMS)-based biomimetic scaffolds with cylinder micropillars for the cultivation of induced pluripotent stem cell-derived RPEs (iPSC-RPEs). RPEs were cultured on the PDMS-based biomimetic scaffolds and validated the cells gene expression. METHODS: The biomimetic PDMS scaffold was fabricated through spin coating and lithography method. It was further modified on surface with biomolecules to improve cell affinity and stability. The iPSC-RPEs were seeded on the scaffold and analyzed with characteristic gene expression. RESULTS: PDMS biomimetic scaffold was analyzed with Fourier transform infrared spectroscopy and proved its chemical composition. iPSC-RPEs demonstrated confluent cell monolayer on the scaffold and maintained RPE-specific gene expression, which proved the PDMS-based biomimetic scaffold to be supportive for iPSC-RPEs growth. CONCLUSION: The PDMS interface allowed regular growth of iPSC-RPEs and the design of cylinder micropillars further provided the bioscaffold high motion resistance may improve the engraftment stability of iPSC-RPEs after transplantation. Taken together, this innovative PDMS-based biomimetic scaffold may serve as an ideal interface for in vitro iPSC-RPE cultivation and subsequent transplantation in vivo. This novel device exhibits better bioavailability than conventional injection of donor cells and may be an alternative option for the treatment of AMD.


Assuntos
Biomimética , Epitélio Pigmentado da Retina/citologia , Alicerces Teciduais , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Dimetilpolisiloxanos/química , Humanos , Degeneração Macular/terapia
5.
Cell Transplant ; 28(11): 1345-1357, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31313605

RESUMO

Best dystrophy (BD), also termed best vitelliform macular dystrophy (BVMD), is a juvenile-onset form of macular degeneration and can cause central visual loss. Unfortunately, there is no clear definite therapy for BD or improving the visual function on this progressive disease. The human induced pluripotent stem cell (iPSC) system has been recently applied as an effective tool for genetic consultation and chemical drug screening. In this study, we developed patient-specific induced pluripotent stem cells (BD-iPSCs) from BD patient-derived dental pulp stromal cells and then differentiated BD-iPSCs into retinal pigment epithelial cells (BD-RPEs). BD-RPEs were used as an expandable platform for in vitro candidate drug screening. Compared with unaffected sibling-derived iPSC-derived RPE cells (Ctrl-RPEs), BD-RPEs exhibited typical RPE-specific markers with a lower expression of the tight junction protein ZO-1 and Bestrophin-1 (BEST1), as well as reduced phagocytic capabilities. Notably, among all candidate drugs, curcumin was the most effective for upregulating both the BEST1 and ZO-1 genes in BD-RPEs. Using the iPSC-based drug-screening platform, we further found that curcumin can significantly improve the mRNA expression levels of Best gene in BD-iPSC-derived RPEs. Importantly, we demonstrated that curcumin-loaded PLGA nanoparticles (Cur-NPs) were efficiently internalized by BD-RPEs. The Cur-NPs-based controlled release formulation further increased the expression of ZO-1 and Bestrophin-1, and promoted the function of phagocytosis and voltage-dependent calcium channels in BD-iPSC-derived RPEs. We further demonstrated that Cur-NPs enhanced the expression of antioxidant enzymes with a decrease in intracellular ROS production and hydrogen peroxide-induced oxidative stress. Collectively, these data supported that Cur-NPs provide a potential cytoprotective effect by regulating the anti-oxidative abilities of degenerated RPEs. In addition, the application of patient-specific iPSCs provides an effective platform for drug screening and personalized medicine in incurable diseases.


Assuntos
Canais de Cálcio/metabolismo , Curcumina/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Distrofia Macular Viteliforme/metabolismo , Bestrofinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/enzimologia , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Fagocitose/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
6.
Int Surg ; 92(2): 78-81, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17518248

RESUMO

The use of antibiotic-impregnated acrylic cement as a bone spacer between the intervals of revision hip arthroplasty for infection has been widely practiced. Vascular injuries caused by the migration of a cement spacer with subsequent erosion of the vessel wall have never been reported. A 67-year-old woman presented with tense swelling over her left lower extremity and hemarthroses of the left hip after implantation of a cement spacer for infected hip arthroplasty. Complete external compression of the external iliac vein and laceration of the iliac artery by the spacer were found. The symptoms were resolved after surgical debridement, removal of the spacer and femoral stem, and repair of the vessel. Cautious placement of a cement spacer in the acetabular fossa accompanied with poor bone stock must be emphasized.


Assuntos
Artroplastia de Quadril/efeitos adversos , Cimentos Ósseos/efeitos adversos , Migração de Corpo Estranho/complicações , Artéria Ilíaca/lesões , Veia Ilíaca/patologia , Doenças Vasculares Periféricas/etiologia , Resinas Acrílicas/efeitos adversos , Idoso , Constrição Patológica/etiologia , Feminino , Hemartrose/etiologia , Humanos , Extremidade Inferior/irrigação sanguínea , Infecções Relacionadas à Prótese/etiologia , Cimentos de Resina/efeitos adversos
7.
Oncotarget ; 7(40): 64631-64648, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27564261

RESUMO

Advanced age-related macular degeneration (AMD) may lead to geographic atrophy or fibrovascular scar at macular, dysfunctional retinal microenvironment, and cause profound visual loss. Recent clinical trials have implied the potential application of pluripotent cell-differentiated retinal pigment epithelial cells (dRPEs) and membranous scaffolds implantation in repairing the degenerated retina in AMD. However, the efficacy of implanted membrane in immobilization and supporting the viability and functions of dRPEs, as well as maintaining the retinal microenvironment is still unclear. Herein we generated a biomimetic scaffold mimicking subretinal Bruch's basement from plasma modified polydimethylsiloxane (PDMS) sheet with laminin coating (PDMS-PmL), and investigated its potential functions to provide a subretinal environment for dRPE-monolayer grown on it. Firstly, compared to non-modified PDMS, PDMS-PmL enhanced the attachment, proliferation, polarization, and maturation of dRPEs. Second, PDMS-PmL increased the polarized tight junction, PEDF secretion, melanosome pigment deposit, and phagocytotic-ability of dRPEs. Third, PDMS-PmL was able to carry a dRPEs/photoreceptor-precursors multilayer retina tissue. Finally, the in vivo subretinal implantation of PDMS-PmL in porcine eyes showed well-biocompatibility up to 2-year follow-up. Notably, multifocal ERGs at 2-year follow-up revealed well preservation of macular function in PDMS-PmL, but not PDMS, transplanted porcine eyes. Trophic PEDF secretion of macular retina in PDMS-PmL group was also maintained to preserve retinal microenvironment in PDMS-PmL eyes at 2 year. Taken together, these data indicated that PDMS-PmL is able to sustain the physiological morphology and functions of polarized RPE monolayer, suggesting its potential of rescuing macular degeneration in vivo.


Assuntos
Materiais Biomiméticos/química , Dimetilpolisiloxanos/química , Laminina/química , Degeneração Macular/cirurgia , Nylons/química , Células-Tronco Pluripotentes/transplante , Epitélio Pigmentado da Retina/transplante , Transplante de Células-Tronco , Alicerces Teciduais/química , Animais , Lâmina Basilar da Corioide/metabolismo , Adesão Celular , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Microambiente Celular , Regeneração Tecidual Guiada , Melanossomas/metabolismo , Células-Tronco Pluripotentes/patologia , Epitélio Pigmentado da Retina/patologia , Suínos
8.
J Chin Med Assoc ; 78(11): 635-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26383186

RESUMO

Nanoparticles combined with cells, drugs, and specially designed genes provide improved therapeutic efficacy in studies and clinical setting, demonstrating a new era of treatment strategy, especially in retinal diseases. Nanotechnology-based drugs can provide an essential platform for sustaining, releasing and a specific targeting design to treat retinal diseases. Poly-lactic-co-glycolic acid is the most widely used biocompatible and biodegradable polymer approved by the Food and Drug Administration. Many studies have attempted to develop special devices for delivering small-molecule drugs, proteins, and other macromolecules consistently and slowly. In this article, we first review current progress in the treatment of age-related macular degeneration. Then, we discuss the function of vascular endothelial growth factor (VEGF) and the pharmacological effects of anti-VEGF-A antibodies and soluble or modified VEGF receptors. Lastly, we summarize the combination of antiangiogenic therapy and nanomedicines, and review current potential targeting therapy in age-related macular degeneration.


Assuntos
Degeneração Macular/tratamento farmacológico , Nanotecnologia , Anticorpos/uso terapêutico , Proteínas do Sistema Complemento , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/antagonistas & inibidores , Sistemas de Liberação de Medicamentos , Humanos , Interleucina-17/fisiologia , Injeções Intravítreas , Ácido Láctico/administração & dosagem , Terapia de Alvo Molecular , Ácido Poliglicólico/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/imunologia
9.
Biomaterials ; 33(32): 8003-16, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22858046

RESUMO

Induced pluripotent stem cells (iPSCs) have promising potential in regenerative medicine, but whether iPSCs can promote corneal reconstruction remains undetermined. In this study, we successfully reprogrammed human corneal keratocytes into iPSCs. To prevent feeder cell contamination, these iPSCs were cultured onto a serum- and feeder-free system in which they remained stable through 30 passages and showed ESC-like pluripotent property. To investigate the availability of iPSCs as bioengineered substitutes in corneal repair, we developed a thermo-gelling injectable amphiphatic carboxymethyl-hexanoyl chitosan (CHC) nanoscale hydrogel and found that such gel increased the viability and CD44+proportion of iPSCs, and maintained their stem-cell like gene expression, in the presence of culture media. Combined treatment of iPSC with CHC hydrogel (iPSC/CHC hydrogel) facilitated wound healing in surgical abrasion-injured corneas. In severe corneal damage induced by alkaline, iPSC/CHC hydrogel enhanced corneal reconstruction by downregulating oxidative stress and recruiting endogenous epithelial cells to restore corneal epithelial thickness. Therefore, we demonstrated that these human keratocyte-reprogrammed iPSCs, when combined with CHC hydrogel, can be used as a rapid delivery system to efficiently enhance corneal wound healing. In addition, iPSCs reprogrammed from corneal surgical residues may serve as an alternative cell source for personalized therapies for human corneal damage.


Assuntos
Quitosana/análogos & derivados , Córnea/efeitos dos fármacos , Córnea/patologia , Ceratócitos da Córnea/citologia , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapêutico , Células-Tronco Pluripotentes Induzidas/transplante , Cicatrização/efeitos dos fármacos , Animais , Células Cultivadas , Reprogramação Celular , Quitosana/uso terapêutico , Córnea/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Estresse Oxidativo/efeitos dos fármacos , Ratos
10.
Biomaterials ; 32(34): 9077-88, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21890195

RESUMO

Cationic polyurethane, a biodegradable non-viral vector, protects DNA from nuclease degradation and helps to deliver genes efficiently. Oct4, a POU-domain transcription factor, is highly expressed in maintaining pluripotency and cellular reprogramming process in stem cells. SirT1, a NAD-dependent histone deacetylase, is an essential mediator of cellular longevity. Herein we demonstrated that both Oct4 and SirT1 (Oct4/SirT1) expression was decreased in an age-dependent manner in retina with aged-related macular degeneration and retinal pigment epithelium cells (RPEs). To investigate the possible rescuing role of Oct4/SirT1, polyurethane-short branch polyethylenimine (PU-PEI) was used to deliver Oct4/SirT1 into aged RPEs (aRPEs) or light-injured rat retinas. Oct4/SirT1 overexpression increased the expression of several progenitor-related genes and the self-renewal ability of aRPEs. Moreover, Oct4/SirT1 overexpression resulted in the demethylation of the Oct4 promoter and enhanced the expression of antioxidant enzymes, which was accompanied by a decrease in intracellular ROS production and hydrogen peroxide-induced oxidative stress. Importantly, PU-PEI-mediated Oct4/SirT1 gene transfer rescued retinal cell loss and improved electroretinographic responses in light-injured rat retinas. In summary, these data suggest that PU-PEI-mediated delivery of Oct4/SirT1 reprograms aRPEs into a more primitive state and results in cytoprotection by regulating the antioxidative capabilities of these cells.


Assuntos
Fator 3 de Transcrição de Octâmero/administração & dosagem , Fator 3 de Transcrição de Octâmero/genética , Polietilenoimina/química , Poliuretanos/química , Epitélio Pigmentado da Retina/metabolismo , Sirtuína 1/administração & dosagem , Sirtuína 1/genética , Adulto , Idoso , Animais , Linhagem Celular , Feminino , Expressão Gênica , Humanos , Degeneração Macular/genética , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retina/patologia , Epitélio Pigmentado da Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA