Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34283167

RESUMO

Caries is a dental disease caused by bacterial infection. If the cause of the caries is detected early, the treatment will be relatively easy, which in turn prevents caries from spreading. The current common procedure of dentists is to first perform radiographic examination on the patient and mark the lesions manually. However, the work of judging lesions and markings requires professional experience and is very time-consuming and repetitive. Taking advantage of the rapid development of artificial intelligence imaging research and technical methods will help dentists make accurate markings and improve medical treatments. It can also shorten the judgment time of professionals. In addition to the use of Gaussian high-pass filter and Otsu's threshold image enhancement technology, this research solves the problem that the original cutting technology cannot extract certain single teeth, and it proposes a caries and lesions area analysis model based on convolutional neural networks (CNN), which can identify caries and restorations from the bitewing images. Moreover, it provides dentists with more accurate objective judgment data to achieve the purpose of automatic diagnosis and treatment planning as a technology for assisting precision medicine. A standardized database established following a defined set of steps is also proposed in this study. There are three main steps to generate the image of a single tooth from a bitewing image, which can increase the accuracy of the analysis model. The steps include (1) preprocessing of the dental image to obtain a high-quality binarization, (2) a dental image cropping procedure to obtain individually separated tooth samples, and (3) a dental image masking step which masks the fine broken teeth from the sample and enhances the quality of the training. Among the current four common neural networks, namely, AlexNet, GoogleNet, Vgg19, and ResNet50, experimental results show that the proposed AlexNet model in this study for restoration and caries judgments has an accuracy as high as 95.56% and 90.30%, respectively. These are promising results that lead to the possibility of developing an automatic judgment method of bitewing film.


Assuntos
Cárie Dentária , Dente , Inteligência Artificial , Cárie Dentária/diagnóstico por imagem , Suscetibilidade à Cárie Dentária , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
2.
Sensors (Basel) ; 21(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34770356

RESUMO

Apical lesions, the general term for chronic infectious diseases, are very common dental diseases in modern life, and are caused by various factors. The current prevailing endodontic treatment makes use of X-ray photography taken from patients where the lesion area is marked manually, which is therefore time consuming. Additionally, for some images the significant details might not be recognizable due to the different shooting angles or doses. To make the diagnosis process shorter and efficient, repetitive tasks should be performed automatically to allow the dentists to focus more on the technical and medical diagnosis, such as treatment, tooth cleaning, or medical communication. To realize the automatic diagnosis, this article proposes and establishes a lesion area analysis model based on convolutional neural networks (CNN). For establishing a standardized database for clinical application, the Institutional Review Board (IRB) with application number 202002030B0 has been approved with the database established by dentists who provided the practical clinical data. In this study, the image data is preprocessed by a Gaussian high-pass filter. Then, an iterative thresholding is applied to slice the X-ray image into several individual tooth sample images. The collection of individual tooth images that comprises the image database are used as input into the CNN migration learning model for training. Seventy percent (70%) of the image database is used for training and validating the model while the remaining 30% is used for testing and estimating the accuracy of the model. The practical diagnosis accuracy of the proposed CNN model is 92.5%. The proposed model successfully facilitated the automatic diagnosis of the apical lesion.


Assuntos
Redes Neurais de Computação , Dente , Humanos , Radiografia , Dente/diagnóstico por imagem
3.
Diagnostics (Basel) ; 14(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39125563

RESUMO

The severity of periodontitis can be analyzed by calculating the loss of alveolar crest (ALC) level and the level of bone loss between the tooth's bone and the cemento-enamel junction (CEJ). However, dentists need to manually mark symptoms on periapical radiographs (PAs) to assess bone loss, a process that is both time-consuming and prone to errors. This study proposes the following new method that contributes to the evaluation of disease and reduces errors. Firstly, innovative periodontitis image enhancement methods are employed to improve PA image quality. Subsequently, single teeth can be accurately extracted from PA images by object detection with a maximum accuracy of 97.01%. An instance segmentation developed in this study accurately extracts regions of interest, enabling the generation of masks for tooth bone and tooth crown with accuracies of 93.48% and 96.95%. Finally, a novel detection algorithm is proposed to automatically mark the CEJ and ALC of symptomatic teeth, facilitating faster accurate assessment of bone loss severity by dentists. The PA image database used in this study, with the IRB number 02002030B0 provided by Chang Gung Medical Center, Taiwan, significantly reduces the time required for dental diagnosis and enhances healthcare quality through the techniques developed in this research.

4.
Bioengineering (Basel) ; 11(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39061757

RESUMO

In the field of dentistry, the presence of dental calculus is a commonly encountered issue. If not addressed promptly, it has the potential to lead to gum inflammation and eventual tooth loss. Bitewing (BW) images play a crucial role by providing a comprehensive visual representation of the tooth structure, allowing dentists to examine hard-to-reach areas with precision during clinical assessments. This visual aid significantly aids in the early detection of calculus, facilitating timely interventions and improving overall outcomes for patients. This study introduces a system designed for the detection of dental calculus in BW images, leveraging the power of YOLOv8 to identify individual teeth accurately. This system boasts an impressive precision rate of 97.48%, a recall (sensitivity) of 96.81%, and a specificity rate of 98.25%. Furthermore, this study introduces a novel approach to enhancing interdental edges through an advanced image-enhancement algorithm. This algorithm combines the use of a median filter and bilateral filter to refine the accuracy of convolutional neural networks in classifying dental calculus. Before image enhancement, the accuracy achieved using GoogLeNet stands at 75.00%, which significantly improves to 96.11% post-enhancement. These results hold the potential for streamlining dental consultations, enhancing the overall efficiency of dental services.

5.
Bioengineering (Basel) ; 10(6)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37370571

RESUMO

As the popularity of dental implants continues to grow at a rate of about 14% per year, so do the risks associated with the procedure. Complications such as sinusitis and nerve damage are not uncommon, and inadequate cleaning can lead to peri-implantitis around the implant, jeopardizing its stability and potentially necessitating retreatment. To address this issue, this research proposes a new system for evaluating the degree of periodontal damage around implants using Periapical film (PA). The system utilizes two Convolutional Neural Networks (CNN) models to accurately detect the location of the implant and assess the extent of damage caused by peri-implantitis. One of the CNN models is designed to determine the location of the implant in the PA with an accuracy of up to 89.31%, while the other model is responsible for assessing the degree of Peri-implantitis damage around the implant, achieving an accuracy of 90.45%. The system combines image cropping based on position information obtained from the first CNN with image enhancement techniques such as Histogram Equalization and Adaptive Histogram Equalization (AHE) to improve the visibility of the implant and gums. The result is a more accurate assessment of whether peri-implantitis has eroded to the first thread, a critical indicator of implant stability. To ensure the ethical and regulatory standards of our research, this proposal has been certified by the Institutional Review Board (IRB) under number 202102023B0C503. With no existing technology to evaluate Peri-implantitis damage around dental implants, this CNN-based system has the potential to revolutionize implant dentistry and improve patient outcomes.

6.
Bioengineering (Basel) ; 10(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37508829

RESUMO

Furcation defects pose a significant challenge in the diagnosis and treatment planning of periodontal diseases. The accurate detection of furcation involvements (FI) on periapical radiographs (PAs) is crucial for the success of periodontal therapy. This research proposes a deep learning-based approach to furcation defect detection using convolutional neural networks (CNN) with an accuracy rate of 95%. This research has undergone a rigorous review by the Institutional Review Board (IRB) and has received accreditation under number 202002030B0C505. A dataset of 300 periapical radiographs of teeth with and without FI were collected and preprocessed to enhance the quality of the images. The efficient and innovative image masking technique used in this research better enhances the contrast between FI symptoms and other areas. Moreover, this technology highlights the region of interest (ROI) for the subsequent CNN models training with a combination of transfer learning and fine-tuning techniques. The proposed segmentation algorithm demonstrates exceptional performance with an overall accuracy up to 94.97%, surpassing other conventional methods. Moreover, in comparison with existing CNN technology for identifying dental problems, this research proposes an improved adaptive threshold preprocessing technique that produces clearer distinctions between teeth and interdental molars. The proposed model achieves impressive results in detecting FI with identification rates ranging from 92.96% to a remarkable 94.97%. These findings suggest that our deep learning approach holds significant potential for improving the accuracy and efficiency of dental diagnosis. Such AI-assisted dental diagnosis has the potential to improve periodontal diagnosis, treatment planning, and patient outcomes. This research demonstrates the feasibility and effectiveness of using deep learning algorithms for furcation defect detection on periapical radiographs and highlights the potential for AI-assisted dental diagnosis. With the improvement of dental abnormality detection, earlier intervention could be enabled and could ultimately lead to improved patient outcomes.

7.
Bioengineering (Basel) ; 9(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36550983

RESUMO

Apical Lesions, one of the most common oral diseases, can be effectively detected in daily dental examinations by a periapical radiograph (PA). In the current popular endodontic treatment, most dentists spend a lot of time manually marking the lesion area. In order to reduce the burden on dentists, this paper proposes a convolutional neural network (CNN)-based regional analysis model for spical lesions for periapical radiographs. In this study, the database was provided by dentists with more than three years of practical experience, meeting the criteria for clinical practical application. The contributions of this work are (1) an advanced adaptive threshold preprocessing technique for image segmentation, which can achieve an accuracy rate of more than 96%; (2) a better and more intuitive apical lesions symptom enhancement technique; and (3) a model for apical lesions detection with an accuracy as high as 96.21%. Compared with existing state-of-the-art technology, the proposed model has improved the accuracy by more than 5%. The proposed model has successfully improved the automatic diagnosis of apical lesions. With the help of automation, dentists can focus more on technical and medical diagnoses, such as treatment, tooth cleaning, or medical communication. This proposal has been certified by the Institutional Review Board (IRB) with the certification number 202002030B0.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA