Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(30): e2309431, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38402425

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) is a promising gene editing tool to treat diseases at the genetic level. Nonetheless, the challenge of the safe and efficient delivery of CRISPR/Cas9 to host cells constrains its clinical applicability. In the current study, a facile, redox-responsive CRISPR/Cas9-Ribonucleoprotein (RNP) delivery system by combining iron-coordinated aggregation with liposomes (Fe-RNP@L) is reported. The Fe-RNP is formed by the coordination of Fe3+ with amino and carboxyl groups of Cas9, which modifies the lipophilicity and surface charge of RNP and alters cellular uptake from primary endocytosis to endocytosis and cholesterol-dependent membrane fusion. RNP can be rapidly and reversibly released from Fe-RNP in response to glutathione without loss of structural integrity and enzymatic activity. In addition, iron coordination also improves the stability of RNP and substantially mitigates cytotoxicity. This construct enabled highly efficient cytoplasmic/nuclear delivery (≈90%) and gene-editing efficiency (≈70%) even at low concentrations. The high payload content, high editing efficiency, good stability, low immunogenicity, and ease of production and storage, highlight its potential for diverse genome editing and clinical applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Ferro , Oxirredução , Ribonucleoproteínas , Edição de Genes/métodos , Ferro/química , Humanos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Lipossomos/química , Técnicas de Transferência de Genes , Proteína 9 Associada à CRISPR/metabolismo
2.
Environ Res ; 256: 119252, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815716

RESUMO

Bio-ingestion of microplastics poses a global threat to ecosystems, yet studies within nature reserves, crucial habitats for birds, remain scarce despite the well-documented ingestion of microplastics by avian species. Located in Jiangsu Province, China, the Yancheng Wetland Rare Birds Nature Reserve is home to diverse bird species, including many rare ones. This study aimed to assess the abundance and characteristics of microplastics in common bird species within the reserve, investigate microplastic enrichment across different species, and establish links between birds' habitat types and microplastic ingestion. Microplastics were extracted from the feces of 110 birds, with 84 particles identified from 37.27% of samples. Among 8 species studied, the average microplastic abundance ranged from 0.97 ± 0.47 to 43.43 ± 61.98 items per gram of feces, or 1.5 ± 0.87 to 3.4 ± 1.50 items per individual. The Swan goose (Anser cygnoides) exhibited the highest microplastic abundance per gram of feces, while the black-billed gull (Larus saundersi) had the highest abundance per individual. The predominant form of ingested microplastics among birds in the reserve was fibers, with polyethylene being the most common polymer type. Significant variations in plastic exposure were observed among species and between aquatic and terrestrial birds. This study represents the first quantitative assessment of microplastic concentrations in birds within the reserve, filling a crucial gap in research and providing insights for assessing microplastic pollution and guiding bird conservation efforts in aquatic and terrestrial environments.


Assuntos
Aves , Monitoramento Ambiental , Fezes , Microplásticos , Áreas Alagadas , Animais , China , Microplásticos/análise , Fezes/química , Poluentes Químicos da Água/análise , Conservação dos Recursos Naturais
3.
Theranostics ; 11(6): 2917-2931, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456580

RESUMO

Rationale: Peripheral nerve injury (PNI) is a great challenge for regenerative medicine. Nerve autograft is the gold standard for clinical PNI repair. Due to its significant drawbacks, artificial nerve guidance conduits (NGCs) have drawn much attention as replacement therapies. We developed a combinatorial NGC consisting of longitudinally aligned electrospun nanofibers and porcine decellularized nerve matrix hydrogel (pDNM gel). The in vivo capacity for facilitating nerve tissue regeneration and functional recovery was evaluated in a rat sciatic nerve defect model. Methods: Poly (L-lactic acid) (PLLA) was electrospun into randomly oriented (PLLA-random) and longitudinally aligned (PLLA-aligned) nanofibers. PLLA-aligned were further coated with pDNM gel at concentrations of 0.25% (PLLA-aligned/0.25% pDNM gel) and 1% (PLLA-aligned/1% pDNM gel). Axonal extension and Schwann cells migration were evaluated by immunofluorescence staining of dorsal root ganglia cultured on the scaffolds. To fabricate implantable NGCs, the nanofibrous scaffolds were rolled and covered with an electrospun protection tube. The fabricated NGCs were then implanted into a 5 mm sciatic nerve defect model in adult male Sprague-Dawley rats. Nerves treated with NGCs were compared to contralateral uninjured nerves (control group), injured but untreated nerves (unstitched group), and autografted nerves. Nerve regeneration was monitored by an established set of assays, including T2 values and diffusion tensor imaging (DTI) derived from multiparametric magnetic resonance imaging (MRI), histological assessments, and immunostaining. Nerve functional recovery was evaluated by walking track analysis. Results: PLLA-aligned/0.25% pDNM gel scaffold exhibited the best performance in facilitating directed axonal extension and Schwann cells migration in vitro due to the combined effects of the topological cues provided by the aligned nanofibers and the biochemical cues retained in the pDNM gel. Consistent results were obtained in animal experiments with the fabricated NGCs. Both the T2 and fractional anisotropy values of the PLLA-aligned/0.25% pDNM gel group were the closest to those of the autografted group, and returned to normal much faster than those of the other NGCs groups. Histological assessment indicated that the implanted PLLA-aligned/0.25% pDNM gel NGC resulted in the largest number of axons and the most extensive myelination among all fabricated NGCs. Further, the PLLA-aligned/0.25% pDNM gel group exhibited the highest sciatic nerve function index, which was comparable to that of the autografted group, at 8 weeks post-surgery. Conclusions: NGCs composed of aligned PLLA nanofibers decorated with 0.25% pDNM gel provided both topological and biochemical guidance for directing and promoting axonal extension, nerve fiber myelination, and functional recovery. Moreover, T2-mapping and DTI metrics were found to be useful non-invasive monitoring techniques for PNI treatment.


Assuntos
Hidrogéis/farmacologia , Nanofibras/administração & dosagem , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Nervo Isquiático/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Imagem de Tensor de Difusão/métodos , Gânglios Espinais/efeitos dos fármacos , Regeneração Tecidual Guiada/métodos , Masculino , Regeneração Nervosa/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Poliésteres/administração & dosagem , Ratos , Ratos Sprague-Dawley , Medicina Regenerativa/métodos , Células de Schwann/efeitos dos fármacos , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
4.
ACS Appl Mater Interfaces ; 11(19): 17167-17176, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31002219

RESUMO

Synergistic intercellular interactions have been widely acknowledged in tuning functional cell behaviors in vivo, and these interactions have inspired the development of a variety of scaffolds for regenerative medicine. In this paper, the promotion of Schwann cell (SC)-neurite interactions through the use of a nerve extracellular matrix-coated nanofiber composite in vitro was demonstrated using a cell culturing platform consisting of either random or aligned electrospun poly(l-lactic acid) nanofibers and decellularized peripheral nerve matrix gel (pDNM gel) from porcine peripheral nervous tissue. The pDNM-coated nanofiber platform served as a superior substrate for dorsal root ganglion culturing. Furthermore, SC migration was facilitated by pDNM gel coating on the nanofibers, accompanied with much faster axonal extension, in comparison with the effect of topographical guidance from the aligned electrospun fibers only. Finally, the decellularized nerve matrix promoted the ability of SCs to wrap around bundled neurites, triggering axonal remyelination toward nerve fiber functionalization.


Assuntos
Neurogênese/genética , Medicina Regenerativa , Células de Schwann/efeitos dos fármacos , Engenharia Tecidual , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/genética , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/crescimento & desenvolvimento , Humanos , Ácido Láctico/química , Nanofibras/química , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/crescimento & desenvolvimento , Neurogênese/efeitos dos fármacos , Polímeros , Suínos , Alicerces Teciduais/química
5.
Mater Sci Eng C Mater Biol Appl ; 83: 130-142, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208270

RESUMO

We recently fabricated multi-channel PLLA nerve conduits (NCs, conduits diameter: ~3mm, channels diameter: ~200µm) with nano-fibrous microstructure (NNCs) and ladder-like microstructure (LNCs), and found the nanofibers in the NNCs promote differentiation of nerve stem cells (NSCs) into neurons. In the present study, we evaluated the degradation profile of NNCs and LNCs, and observed that NNCs degraded too fast to implant. To delay the degradation and retain the nano-scale effect of NNCs, we used gelatin to wrap (2% w/v gelatin) or embed (8% w/v gelatin) NNCs and LNCs via vacuum infusion and chemical cross-linking with genipin. NNCs-wrapped maintained their original nano-fibrous microstructure, but NNCs-embedded presented a porous morphology without nanofibers appearing. Incorporation of gelatin did not change their compressive moduli, but increased the creep recovery ratios of LNCs and NNCs. In vitro degradation revealed that integrity was maintained and the mass loss was <5% for NNCs-wrapped after 10weeks, in comparison with 15% mass loss and collapsed structure of the pure NNCs after 4weeks. Meanwhile, there were no obvious changes in the degradation of LNCs with modification. Nerve stem cells (NSCs) were then seeded onto the six NCs represented as: NNCs, NNCs-wrapped, NNCs-embedded, LNCs, LNCs-wrapped, and LNCs-embedded. Immunocytochemistry analysis demonstrated that gelatin coating enhanced the adhesion and proliferation of NSCs, and the NNCs-wrapped scaffold promoted the differentiation proportion of NSCs into neurons from 25.8% (on pure NNCs) to 53.4% after 14days of seeding. On the other hand, only 14.3% of neurons were derived from the differentiation of the seeded NSCs on the NNCs-embedded. NNCs-wrapped would be a good choice for future studies in nerve injury repair in vivo due to its appropriate degradation rate, flexibility, and nano-scale effect.


Assuntos
Gelatina/química , Nanofibras/química , Células-Tronco Neurais/citologia , Poliésteres/química , Engenharia Tecidual/métodos
6.
Acta Biomater ; 73: 326-338, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29649641

RESUMO

Decellularized matrix hydrogels derived from tissues or organs have been used for tissue repair due to their biocompatibility, tunability, and tissue-specific extracellular matrix (ECM) components. However, the preparation of decellularized peripheral nerve matrix hydrogels and their use to repair nerve defects have not been reported. Here, we developed a hydrogel from porcine decellularized nerve matrix (pDNM-G), which was confirmed to have minimal DNA content and retain collagen and glycosaminoglycans content, thereby allowing gelatinization. The pDNM-G exhibited a nanofibrous structure similar to that of natural ECM, and a ∼280-Pa storage modulus at 10 mg/mL similar to that of native neural tissues. Western blot and liquid chromatography tandem mass spectrometry analysis revealed that the pDNM-G consisted mostly of ECM proteins and contained primary ECM-related proteins, including fibronectin and collagen I and IV). In vitro experiments showed that pDNM-G supported Schwann cell proliferation and preserved cell morphology. Additionally, in a 15-mm rat sciatic nerve defect model, pDNM-G was combined with electrospun poly(lactic-acid)-co-poly(trimethylene-carbonate)conduits to bridge the defect, which did not elicit an adverse immune response and promoted the activation of M2 macrophages associated with a constructive remodeling response. Morphological analyses and electrophysiological and functional examinations revealed that the regenerative outcomes achieved by pDNM-G were superior to those by empty conduits and closed to those using rat decellularized nerve matrix allograft scaffolds. These findings indicated that pDNM-G, with its preserved ECM composition and nanofibrous structure, represents a promising biomaterial for peripheral nerve regeneration. STATEMENT OF SIGNIFICANCE: Decellularized nerve allografts have been widely used to treat peripheral nerve injury. However, given their limited availability and lack of bioactive factors, efforts have been made to improve the efficacy of decellularized nerve allograft for nerve regeneration, with limited success. Xenogeneic decellularized tissue matrices or hydrogels have been widely used for surgical applications owing to their ease of harvesting and low immunogenicity. Moreover, decellularized tissue matrix hydrogels show good biocompatibility and are highly tunable. In this study, we prepared a porcine decellularized nerve matrix (pDNM-G) and evaluated its potential for promoting nerve regeneration. Our results demonstrate that pDNM-G can support Schwann cell proliferation and peripheral nerve regeneration by means of residual primary extracellular matrix components and nano-fibrous structure features.


Assuntos
Materiais Biocompatíveis/química , Hidrogéis/química , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Nervos Periféricos/patologia , Animais , Proliferação de Células , Colágeno/química , Matriz Extracelular/química , Fibronectinas/química , Gelatina/química , Glicosaminoglicanos/química , Sistema Imunitário , Macrófagos/metabolismo , Masculino , Nanofibras , Sistema Nervoso Periférico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Suínos , Porco Miniatura , Engenharia Tecidual/métodos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA