Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 20: 100147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34530158

RESUMO

Seneca Valley virus (SVV) or commonly known as senecavirus A, is one of the picornavirus that is associated with vesicular disease and neonatal mortality in swine herds. Our previous study found that SVV replicates extremely faster in porcine Instituto Biologico-Rim Suino-2 (IBRS-2) cells than that in porcine kidney-15 (PK-15) cells. However, the underlying mechanism remains unknown. In this study, we comprehensively compared the expression features between IBRS-2 cells and PK-15 cells in response to SVV infection by an unbiased high-throughput quantitative proteomic analysis. We found that the innate immune response-related pathways were efficiently activated in PK-15 cells but not in IBRS-2 cells during SVV infection. A large amount of interferon (IFN)-stimulated genes were induced in PK-15 cells. In contrast, no IFN-stimulated genes were induced in IBRS-2 cells. Besides, we determined similar results in the two cell lines infected by another porcine picornavirus foot-and-mouth disease virus. Further study demonstrated that the Janus kinase signal transducer and activator of transcription signaling pathway was functioning properly in both IBRS-2 and PK-15 cells. A systematic screening study revealed that the aberrant signal transduction from TANK-binding kinase 1 to IFN regulatory factor 3 in the retinoic acid-inducible gene I-like receptor signaling pathway in IBRS-2 cells was the fundamental cause of the different innate immune response manifestation and different viral replication rate in the two cell lines. Together, our findings determined the different features of IBRS-2 and PK-15 cell lines, which will help for clarification of the pathogenesis of SVV. Besides, identification of the underlying mechanisms will provide new targets and an insight for decreasing the viral clearance rate and probably improve the oncolytic effect by SVV in cancer cells.


Assuntos
Proteína DEAD-box 58/metabolismo , Picornaviridae/fisiologia , Receptores Imunológicos/metabolismo , Animais , Linhagem Celular , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/virologia , Transdução de Sinais , Suínos , Replicação Viral
2.
Sci Total Environ ; 864: 161111, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572308

RESUMO

Plastic waste can carry organisms such as bacterial pathogens and antibiotic resistance genes (ARGs) over long distances. However, only few studies have been conducted on the occurrence of ARGs in plastic waste from mangrove wetlands. This study evaluated the distribution characteristics and ecological risks of plastic waste from mangroves in the coastal areas of the South China Sea. The correlation between anthropogenic activity levels and abundance of ARGs in mangroves was evaluated. Transparent and white were the common colors of plastic waste in mangroves. The main shapes of plastic waste were foam and film. The predominant types of plastic waste order were as follows: polyethylene (30.18 %) > polypropylene (27.51 %) > polystyrene (23.59 %). The living area (LA) mangroves had the highest polymer hazard and pollution load indices of 329.09 and 10.03, respectively. The abundance of ARGs (5.08 × 108 copies/g) on the plastic surface in LA mangroves was significantly higher than that of the other mangrove areas. Furthermore, there was a significant correlation between ARGs and intI1 on the plastic surface in mangroves. Correlation analysis between the ARGs and intI1 showed that most of the ARGs were correlated with intI1 except for msbA. In LA mangroves, sociometric and environmental factors showed significant correlations with the absolute abundances of the four ARGs and intI1, indicating that anthropogenic activities may lead to changes in the amount of ARGs on plastic surfaces. Furthermore, the ARG storage of plastic waste from different mangroves was as follows: protected areas (3.12 × 1017 copies) > living areas (2.99 × 1017 copies) > aquaculture pond areas (2.88 × 1017 copies). The higher ARG storage of LA mangroves, with the smallest area, greatly increased its ecological risk. The results of this study can provide basic data for processes that influence the distribution of plastic waste and ARGs in mangroves.


Assuntos
Antibacterianos , Áreas Alagadas , Genes Bacterianos , Plásticos , Resistência Microbiana a Medicamentos/genética , China
3.
Vet Microbiol ; 274: 109550, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36084386

RESUMO

Foot-and-mouth disease virus (FMDV) is a highly contagious virus that causes severe vesicular disease of cloven-hoofed animals. Various endocytosis mechanisms are involved in the entry of FMDV after binding to the integrin and heparan sulfate (HS) receptors. However, the mechanism of FMDV using other unknown receptors to enter the cells remains unclear. Here, we reported that the endocytosis and endosomal pathways are employed by FMDV to invade the Chinese hamster ovary cell line (CHO-677) without the integrin and HS receptors. We demonstrated that the internalization of FMDV into CHO-677 cells was abrogated by chlorpromazine, an inhibitor of clathrin-mediated endocytosis. Knockdown of the clathrin heavy chain decreased the viral protein abundance. Incubation of the CHO-677 cells with the inhibitors of caveolae-mediated endocytosis or transfection by caveolin-1 siRNA also limited FMDV replication. In addition, we determined that the acidic environment and the existence of dynamin were essential for FMDV infection in CHO-677 cells. The endosomal proteins Rab5 (early endosome) and Rab7 (late endosome), but not Rab11 (recycling endosome), were utilized by FMDV during infection. These data provide a new entry model of FMDV by unknown receptors which will help to better understand the pathogenesis mediated by FMDV.


Assuntos
Vírus da Febre Aftosa , Doenças da Boca , Doenças dos Roedores , Cricetinae , Animais , Clatrina/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Células CHO , Caveolina 1/metabolismo , Cricetulus , RNA Interferente Pequeno , Cadeias Pesadas de Clatrina/metabolismo , Clorpromazina , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Internalização do Vírus , Endocitose , Dinaminas/metabolismo , Integrinas/metabolismo , Heparitina Sulfato , Proteínas Virais/metabolismo , Doenças da Boca/veterinária
4.
J Biomater Appl ; 32(6): 800-812, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29137495

RESUMO

Due to limited self-healing capacity in cartilages, there is a rising demand for an innovative therapy that promotes chondrocyte proliferation while maintaining its biofunctionality for transplantation. Chondrocyte transplantation has received notable attention; however, the tendencies of cell de-differentiation and de-activation of biofunctionality have been major hurdles in its development, delaying this therapy from reaching the clinic. We believe it is due to the non-stimulative environment in the injured cartilage, which is unable to provide sustainable physical and biological supports to the newly grafted chondrocytes. Therefore, we evaluated whether providing an appropriate matrix to the transplanted chondrocytes could manipulate cell fate and recovery outcomes. Here, we proposed the development of electrosprayed nanoparticles composed of cartilage specific proteins, namely collagen type II and hyaluronic acid, for implantation with pre-seeded chondrocytes into articular cartilage defects. The fabricated nanoparticles were pre-cultured with chondrocytes before implantation into injured articular cartilage. The study revealed a significant potential for nanoparticles to support pre-seeded chondrocytes in cartilage repair, serving as a protein delivery system while improving the survival and biofunctionality of transplanted chondrocytes for prolonged period of time.


Assuntos
Cartilagem Articular , Condrócitos , Nanopartículas , Alicerces Teciduais , Animais , Materiais Biocompatíveis/química , Colágeno Tipo II/química , Masculino , Nanopartículas/química , Coelhos , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA