Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 243(6): 2368-2384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39075808

RESUMO

Catalase (CAT) is the main reactive oxygen species (ROS)-scavenging enzyme in plants and insects. However, it remains elusive whether and how insect saliva CAT suppresses ROS-mediated plant defense, thereby promoting initial virus transmission by insect vectors. Here, we investigated how leafhopper Recilia dorsalis catalase (RdCAT) was secreted from insect salivary glands into rice phloem, and how it was perceived by rice chaperone NO CATALASE ACTIVITY1 (OsNCA1) to scavenge excessive H2O2 during insect-to-plant virus transmission. We found that the interaction of OsNCA1 with RdCAT activated its enzymatic activity to decompose H2O2 in rice plants during leafhopper feeding. However, initial insect feeding did not significantly change rice CATs transcripts. Knockout of OsNCA1 in transgenic lines decreased leafhopper feeding-activated CAT activity and caused higher H2O2 accumulation. A devastating rice reovirus activated RdCAT expression and promoted the cosecretion of virions and RdCAT into leafhopper salivary cavities and ultimately into the phloem. Virus-mediated increase of RdCAT secretion suppressed excessive H2O2, thereby promoting host attractiveness to insect vectors and initial virus transmission. Our findings provide insights into how insect saliva CAT is secreted and perceived by plant chaperones to suppress the early H2O2 burst during insect feeding, thereby facilitating viral transmission.


Assuntos
Catalase , Hemípteros , Peróxido de Hidrogênio , Insetos Vetores , Oryza , Saliva , Animais , Peróxido de Hidrogênio/metabolismo , Hemípteros/virologia , Hemípteros/fisiologia , Saliva/virologia , Saliva/enzimologia , Catalase/metabolismo , Catalase/genética , Insetos Vetores/virologia , Oryza/virologia , Oryza/genética , Oryza/enzimologia , Reoviridae/fisiologia , Doenças das Plantas/virologia , Floema/virologia
2.
Yi Chuan ; 45(12): 1128-1146, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764276

RESUMO

The lytic polysaccharide monooxygenase (LPMO) in the auxiliary active protein family (AA family) catalyzes the oxidative depolymerization of various refractory carbohydrates including cellulose, chitin and starch. While accumulating studies investigate the enzymology of LPMO, the research on the inactivation of LPMO genes has been rarely explored. In this study, five LPMO genes PaLPMO11A (Pa_4_4790), PaLPMO11B (Pa_1_5310), PaLPMO11C (Pa_2_7840), PaLPMO11D (Pa_2_8610) and PaLPMO11E (Pa_3_9420) of the AA11 family in the filamentous fungus Podospora anserina were knocked out by homologous recombination. Single mutants ΔPaLPMO11A (ΔA), ΔPaLPMO11B (ΔB), ΔPaLPMO11C (ΔC), ΔPaLPMO11D (ΔD) and ΔPaLPMO11E (ΔE) were constructed, and then all polygenic mutants were constructed via genetic crosses. The differences in the growth rate and sexual reproduction between wild type and mutant strains were observed on different carbon source media. The alteration of oxidative stress and cellulose degradation ability were found on DAB and NBT staining and cellulase activity determination. These results implicated that LPMO11 genes play a key role in the growth, development, and lignocellulose degradation of P. anserina. The results showed that the spore germination efficiency, growth rate and reproductive capacity of mutant strains including ΔBΔCΔE, ΔAΔBΔCΔE, ΔAΔCΔDΔE and ΔAΔBΔCΔDΔE was significantly decreased on different cellulose carbon sources and the remaining strains have no difference. The reduced utilization of various carbon sources, the growth rate, the spore germination rate, the number of fruiting bodies, the normal fruiting bodies, the shortened life span and the ability to degrade cellulose were found in strains which all five genes in the PaLPMO11 family were deleted. However, the strain still had 45% cellulase activity compared to wild type. These results suggest that LPMO11 genes may be involved in the growth and development, sexual reproduction, senescence and cellulose degradation of P. anserina. This study provides information for systematically elucidating the regulatory mechanism of lignocellulose degradation in filamentous fungus P. anserina.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Podospora , Podospora/genética , Podospora/enzimologia , Podospora/metabolismo , Podospora/crescimento & desenvolvimento , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Celulose/metabolismo , Polissacarídeos/metabolismo , Estresse Oxidativo
3.
Analyst ; 146(12): 3924-3932, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33982684

RESUMO

Highly selective and highly efficient identification of large viruses has been a major obstacle in the field of virus detection. In this work, a novel sandwich resonance light scattering sensor was designed based on molecularly imprinted polymers (MIPs) and aptamers for the first time. One of the recognition probes was obtained by molecular imprinting using environmentally friendly carbon spheres as carriers and the other by modification of the aptamer that can specifically recognize hepatitis B virus (HBV) on the surface of silicon spheres. In the presence of both probes, an MIP-HBV-aptamer sandwich structure was formed continuously in the system with the increase in HBV concentration, resulting in a strong resonance light scattering response. Finally, satisfactory selectivity and sensitivity were obtained, and the imprinting factor was as high as 7.56, which was higher than that reported in previous works of viral molecular imprinting sensor. In addition, it is of great significance to solve the problem of insufficient selectivity of traditional detection methods for macromolecular targets.


Assuntos
Impressão Molecular , Polímeros , Vírus da Hepatite B , Oligonucleotídeos
4.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502028

RESUMO

Cancer is one of the primary causes of worldwide human deaths. Most cancer patients receive chemotherapy and radiotherapy, but these treatments are usually only partially efficacious and lead to a variety of serious side effects. Therefore, it is necessary to develop new therapeutic strategies. The emergence of nanotechnology has had a profound impact on general clinical treatment. The application of nanotechnology has facilitated the development of nano-drug delivery systems (NDDSs) that are highly tumor selective and allow for the slow release of active anticancer drugs. In recent years, vehicles such as liposomes, dendrimers and polymer nanomaterials have been considered promising carriers for tumor-specific drug delivery, reducing toxicity and improving biocompatibility. Among them, polymer nanoparticles (NPs) are one of the most innovative methods of non-invasive drug delivery. Here, we review the application of polymer NPs in drug delivery, gene therapy, and early diagnostics for cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Humanos , Polímeros
5.
BMC Oral Health ; 20(1): 204, 2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652980

RESUMO

BACKGROUND: To systematically review the epidemiologic relationship between periodontitis and type 2 diabetes mellitus (T2DM). METHODS: Four electronic databases were searched up until December 2018. The manual search included the reference lists of the included studies and relevant journals. Observational studies evaluating the relationship between T2DM and periodontitis were included. Meta-analyses were conducted using STATA. RESULTS: A total of 53 observational studies were included. The Adjusted T2DM prevalence was significantly higher in periodontitis patients (OR = 4.04, p = 0.000), and vice versa (OR = 1.58, p = 0.000). T2DM patients had significantly worse periodontal status, as reflected in a 0.61 mm deeper periodontal pocket, a 0.89 mm higher attachment loss and approximately 2 more lost teeth (all p = 0.000), than those without T2DM. The results of the cohort studies found that T2DM could elevate the risk of developing periodontitis by 34% (p = 0.002). The glycemic control of T2DM patients might result in different periodontitis outcomes. Severe periodontitis increased the incidence of T2DM by 53% (p = 0.000), and this result was stable. In contrast, the impact of mild periodontitis on T2DM incidence (RR = 1.28, p = 0.007) was less robust. CONCLUSIONS: There is an evident bidirectional relationship between T2DM and periodontitis. Further well-designed cohort studies are needed to confirm this finding. Our results suggest that both dentists and physicians need to be aware of the strong connection between periodontitis and T2DM. Controlling these two diseases might help prevent each other's incidence.


Assuntos
Diabetes Mellitus Tipo 2 , Periodontite , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Bolsa Periodontal , Periodontite/complicações , Periodontite/epidemiologia
6.
Biomacromolecules ; 17(8): 2540-54, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27398635

RESUMO

Targeted delivery of therapeutics to the intestine is preferred for the management of many diseases due to its diverse advantages. Currently, there are still challenges in creating cost-effective and translational pH-responsive microspheres for intestinal delivery of various hydrophobic drugs. Herein we report a multiple noncovalent interactions-mediated assembly strategy in which carboxyl-bearing compounds (CBCs) are guest molecules, while poly(N-isopropylacrylamide) (PNIPAm) serves as a host polymer. Formation of microparticles and therapeutic packaging can be achieved simultaneously by this assembly approach, leading to well-shaped microspheres with extremely higher drug loading capacity as compared to microspheres based on two FDA-approved materials of poly(d,l-lactide-co-glycolide) (PLGA) and an enteric coating polymer EudragitS 100 (S100). Also, carboxyl-deficient hydrophobic drugs can be effectively entrapped. These assembled microspheres, with excellent reconstitution capability as well as desirable scalability, could selectively release drug molecules under intestinal conditions. By significantly enhancing drug dissolution/release in the intestine, these pH-responsive assemblies may notably improve the oral bioavailability of loaded therapeutics. Moreover, the assembled microspheres possessed superior therapeutic performance in rodent models of inflammation and tumor over the control microspheres derived from PLGA and S100. Therapy with newly developed microspheres did not cause undesirable side effects. Furthermore, in vivo evaluation in mice revealed the carrier material PNIPAm was safe for oral delivery at doses as high as 10 g/kg. Collectively, our findings demonstrated that this type of pH-responsive microsphere may function as superior and translational intestine-directed delivery systems for a diverse array of therapeutics.


Assuntos
Resinas Acrílicas/administração & dosagem , Inflamação/tratamento farmacológico , Mucosa Intestinal/metabolismo , Lipídeos/química , Melanoma Experimental/tratamento farmacológico , Microesferas , Polímeros/química , Resinas Acrílicas/química , Animais , Concentração de Íons de Hidrogênio , Inflamação/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ratos , Ratos Sprague-Dawley
7.
J Environ Manage ; 168: 142-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26706226

RESUMO

A low-cost solid amine adsorbent for CO2 capture was prepared by using sugarcane bagasse (SB), a dominant agro-industrial residue in the sugar and alcohol industry as raw materials. In this preparation process, acrylamide was grafted on SB, and the grafted fiber was then aminated with different type of amine reagents to introduce primary and secondary amine groups onto the surface of SB fibers. The graft and amination conditions were optimized. The prepared solid amine adsorbent showed remarkable CO2 adsorption capacity and the adsorption capacity of the solid amine adsorbent could reach 5.01 mmol CO2/g at room temperature. The comparison of adsorption capacities of amine fibers aminated with various amination agents demonstrated that fibers aminated with triethylenetetramine would obtain higher adsorption capacities and higher amine efficiency. These adsorbents also showed good regeneration performance, the regenerated adsorbent could maintain almost the same adsorption capacity for CO2 after 10 recycles.


Assuntos
Aminas/química , Dióxido de Carbono/química , Celulose/química , Recuperação e Remediação Ambiental/métodos , Saccharum , Acrilamida/química , Adsorção , Aminação , Saccharum/química
8.
Front Med (Lausanne) ; 11: 1335043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288274

RESUMO

Background: Immediate implant placement (IIP), which preserves gingival height and papilla shape while simultaneously accelerating the implant treatment period, has become a popular method due to its commendable clinical outcomes. Nonetheless, deploying immediate implants demands specific preconditions concerning the remaining alveolar bone. This poses a challenge to the accuracy of implant surgery. Case presentation: In this report, we present the case of a 60-year-old woman with a left upper anterior tooth crown dislodged for over a month. Cone beam computed tomography (CBCT) revealed the absence of a labial bone wall on tooth 22, a remaining 1 mm bone wall on the labial side of the root apex, and a 17.2 mm*8.9 mm*4.7 mm shadow in the periapical region of the root apices of teeth 21 and 22, with the narrowest width on the sagittal plane being approximately 5 mm. After the surgeon removed the cyst, they completed the subsequent implantation surgery using an autonomous robot in a challenging aesthetic area. This method circumvented the potential exposure of the screw thread on the labial implant surface, assured initial implant stability. Conclusion: Five months after the operation, the dental crown was restored. The implant remained stable, with yielding notable clinical results. To the best of our knowledge, this clinical case is the first to report the feasibility and precision of immediate implantation in anterior teeth site with periapical cyst removal, performed by an autonomous robotic surgical system. Autonomous robots exhibit exceptional accuracy by accurately controlling axial and angular errors. It can improve the accuracy of implant surgery, which may become a key technology for changing implant surgery. However, further clinical trials are still needed to provide a basis for the rapid development of robotic surgery field.

9.
Front Bioeng Biotechnol ; 12: 1286035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689760

RESUMO

Platelet-rich fibrin, a classical autologous-derived bioactive material, consists of a fibrin scaffold and its internal loading of growth factors, platelets, and leukocytes, with the gradual degradation of the fibrin scaffold and the slow release of physiological doses of growth factors. PRF promotes vascular regeneration, promotes the proliferation and migration of osteoblast-related cells such as mesenchymal cells, osteoblasts, and osteoclasts while having certain immunomodulatory and anti-bacterial effects. PRF has excellent osteogenic potential and has been widely used in the field of bone tissue engineering and dentistry. However, there are still some limitations of PRF, and the improvement of its biological properties is one of the most important issues to be solved. Therefore, it is often combined with bone tissue engineering scaffolds to enhance its mechanical properties and delay its degradation. In this paper, we present a systematic review of the development of platelet-rich derivatives, the structure and biological properties of PRF, osteogenic mechanisms, applications, and optimization to broaden their clinical applications and provide guidance for their clinical translation.

10.
Water Res ; 259: 121856, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38875861

RESUMO

The accumulation of polyurethane plastics (PU-PS) in the environment is on the rise, posing potential risks to the health and function of ecosystems. However, little is known about the degradation behavior of PU-PS in the environment, especially water environment. To address this knowledge gap, we investigated and isolated a degrading strain of Streptomyces sp. B2 from the surface of polyurethane coatings. Subsequently, a photoreactor was employed to simulate the degradation process of bio-based polyurethane (BPU) and petroleum-based polyurethane (PPU) under three conditions, including single microorganism (SM), single light exposure (SL), and combined light exposure/microorganism action (ML) in aqueous solution. The results indicated that PU-PS mainly relies on biodegradation, with the highest degradation rate observed after 28 d under SM condition (BPU 5.69 %; PPU 5.25 %). SL inhibited microbial growth and degradation, with the least impact on plastic degradation. Microorganisms colonized the plastic surface, secreting relevant hydrolytic enzymes and organic acids into the culture medium, providing a negative charge. The carbon chains were broken and aged through hydrogen peroxide induction or attack by oxygen free radicals. This process promoted the formation of oxidized functional groups such as OH and CO, disrupting the polymer's structure. Consequently, localized fragmentation and erosion of the microstructure occurred, resulting in the generation of secondary microplastic (MPs) particles, weight loss of the original plastic, increased surface roughness, and enhanced hydrophilicity. Additionally, BPU exhibited greater degradability than PPU, as microorganisms could utilize the produced fatty acids, which promoted their reproduction. In contrast, PPU degradation generated a large amount of isocyanate, potentially toxic to cells and inhibiting biodegradation. This study unveils the significant role of microorganisms in plastic degradation and the underlying degradation mechanisms of BPU, providing a novel strategy for polyurethane degradation and valuable information for comprehensive assessment of the behavior and fate of MPs in the environment.


Assuntos
Biodegradação Ambiental , Luz , Poliuretanos , Poliuretanos/química , Plásticos , Streptomyces/metabolismo
11.
Nanoscale Horiz ; 9(5): 863-872, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38533738

RESUMO

The behavior of polyelectrolytes in confined spaces has direct relevance to the protein mediated ion transport in living organisms. In this paper, we govern lithium chloride transport by the interface provided by polyelectrolytes, polycation, poly(diallyldimethylammonium chloride) (PDDA) and, polyanion, double stranded deoxyribonucleic acid (dsDNA), in confined graphene oxide (GO) membranes. Polyelectrolyte-GO interfaces demonstrate neuromorphic functions that were successfully applied with nanochannel ion interactions contributed, resulting in ion memory effects. Excitatory and inhibitory post-synaptic currents were tuned continuously as the number of pulses applied increased accordingly, increasing decay times. Furthermore, we demonstrated the short-term memory of a trained vs untrained device in computation. On account of its simple and safe production along with its robustness and stability, we anticipate our device to be a low dimensional building block for arrays to embed artificial neural networks in hardware for neuromorphic computing. Additionally, incorporating such devices with sensing and actuating parts for a complete feedback loop produces robotics with its own ability to learn by modifying actuation based on sensing data.


Assuntos
DNA , Grafite , Polietilenos , Compostos de Amônio Quaternário , Grafite/química , DNA/química , Compostos de Amônio Quaternário/química , Polietilenos/química , Redes Neurais de Computação , Membranas Artificiais , Óxidos/química
12.
Peptides ; 168: 171074, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541433

RESUMO

KPHAEVVLR (KR-9) is a peptide derived from egg white hydrolyzed, which has been found to accelerate skin wound healing in mice. However, the effect of KR-9 on wound healing on palatal mucosa in rats remains unknown, and the mechanism through which KR-9 promotes wound healing should be further explored. Herein, we aimed to investigate the effect and mechanism of KR-9 peptide on palatal mucosa wound healing. Our results showed that KR-9 reduced the wound area of palatal mucosa in rats and promoted human gingival fibroblasts(HGFs) migration and proliferation.The peptide can enter into cytoplasm. It also increased the phosphorylation of PI3K, AKT, and mTOR protein. The effect of KR-9 on HGFs migration and proliferation could be reversed by PI3K inhibitor. These results demonstrated that KR-9 peptide facilitated wound healing of palatal mucosa in rats by promoting HGFs migration and proliferation, which was mediated by PI3K/AKT/mTOR signaling pathway. This data proves that KR-9 might be used as a potential agent for wound healing treatment.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Ratos , Movimento Celular , Proliferação de Células , Clara de Ovo , Mucosa/metabolismo , Peptídeos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Cicatrização
13.
Front Public Health ; 11: 1212141, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732089

RESUMO

Objective: To qualitatively explore the impact of anti-Asian racism in a Chinese community in the greater Boston area. Methods: Individual semi-structured interviews (n = 27) were conducted between June and September 2021. Eligible participants were ethnic Chinese immigrants living in the Boston area, who were recruited through a community-based organization and by word-of-mouth. Interviews were conducted in Mandarin and Cantonese and translated into English. Data were coded and analyzed using a directed approach to content analysis. Results: The majority of participants reported personal experiences of anti-Asian racism, ranging from microaggressions to violent attacks. Although lockdown and isolation during COVID-19 affected all communities, the Chinese community suffered unique and prolonged trauma stemming from the fear of violent attacks against Asians. The older person/people, in particular, were severely isolated due to fear of exposure to anti-Asian hate crimes. Participants reported a variety of emotional, mental, and physical health effects associated with feelings of fear, anxiety, isolation, and powerlessness. Many preferred to engage in self-protective behavior changes rather than relying on external resources. Conclusion: Participants advocated for more education, community, and governmental support, and increased allyship between communities of color. These findings provide cultural context on the trauma this population faces and can inform further actions to address the wide range of reported health effects.


Assuntos
COVID-19 , Racismo , Humanos , Idoso , Boston , Controle de Doenças Transmissíveis , Poder Psicológico
14.
Nanoscale ; 15(17): 7894-7908, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37060139

RESUMO

Periodontitis is an inflammatory disease, mainly caused by the formation of a subgingival plaque biofilm. In recent years, growing attention has been paid to immunotherapy in the treatment of periodontitis, and the importance of communal intervention associated with macrophage polarization was emphasized. Herein, resveratrol (RES) and 20(S)-protopanaxadiol (PPD) were successfully self-assembled into RES@PPD nanoparticles (NPs) by the phenolic resin reaction. RES@PPD NPs have good stability and biocompatibility. The combined application of PPD and RES enhances the anti-inflammatory and antioxidant properties of nanocomposites, remarkably reduces the level of reactive oxygen species, and finally realizes the coordinated regulation of host immunity in periodontitis. The detailed mechanism is as follows: RES@PPD NPs inhibit M1 polarization of macrophages, promote M2 polarization by scavenging ROS, and then inhibit the NF-κB signalling pathway to regulate host immunity. In the animal model of periodontitis, RES@PPD NPs can remarkably decrease the level of pro-inflammatory cytokines, up-regulate the anti-inflammatory cytokines, and exhibit a profound therapeutic effect on local inflammation. Therefore, RES@PPD NPs are effective in antioxidation and anti-inflammation, thus providing a promising candidate drug for the treatment of periodontitis.


Assuntos
Nanopartículas , Periodontite , Animais , Resveratrol/farmacologia , Macrófagos/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fenótipo , Citocinas/metabolismo , Periodontite/tratamento farmacológico
15.
ACS Appl Mater Interfaces ; 14(40): 45178-45188, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178205

RESUMO

Noninvasive photothermal therapy (PTT) is an emerging strategy for eliminating multidrug-resistant (MDR) bacteria that achieve sterilization by generating temperatures above 50 °C; however, such a high temperature also causes collateral damage to healthy tissues. In this study, we developed a low-temperature PTT based on borneol-containing polymer-modified MXene nanosheets (BPM) with bacteria-targeting capabilities. BPM was fabricated through the electrostatic coassembly of negatively charged two-dimensional MXene nanosheets (2DM) and positively charged quaternized α-(+)-borneol-poly(N,N-dimethyl ethyl methacrylate) (BPQ) polymers. Integrating BPQ with 2DM improved the stability of 2DM in physiological environments and enabled the bacterial membrane to be targeted due to the presence of a borneol group and the partially positive charge of BPQ. With the aid of near-infrared irradiation, BPM was able to effectively eliminate methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) through targeted photothermal hyperthermia. More importantly, BPM effectively eradicated more than 99.999% (>5 orders of magnitude) of MRSA by localized heating at a temperature that is safe for the human body (≤40 °C). Together, these findings suggest that BPM has good biocompatibility and that membrane-targeting low-temperature PTT could have great therapeutic potential against MDR infections.


Assuntos
Hipertermia Induzida , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Canfanos , Escherichia coli , Humanos , Hipertermia Induzida/métodos , Metacrilatos/farmacologia , Terapia Fototérmica , Polímeros/farmacologia , Temperatura
16.
ACS Appl Mater Interfaces ; 14(41): 46964-46971, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198085

RESUMO

Fluorescence sensing is limited in practical applications owing to multiple autofluorescent substances in complex biological samples such as serum. In this paper, the luminescence decay effect of persistent luminescent nanoparticles (PLNPs) was used to avoid the interference of autofluorescence in complex biological samples, and a non-autofluorescence molecularly imprinted polymer aptamer sensor (MIP-aptasensor) was designed to detect H5N1 virus. The proposed MIP-aptasensor consists of a magnetic MIP and aptamer-functionalized persistent luminescent nanoparticle Zn2GeO4:Mn2+-H5N1 aptamer (ZGO-H5N1 Apt). Upon simultaneous recognition of H5N1 virus, strong persistent luminescent signal changes were produced. Using the unique luminescent characteristics of PLNPs and the high selectivity of imprinted polymers and aptamers, the designed MIP-aptasensor effectively eliminates the autofluorescence background interference of serum samples and realizes the non-autofluorescence detection of H5N1 virus with high sensitivity (a limit of detection of 0.0128 HAU mL-1, 1.16 fM) and selectivity (the imprinting factor for the target H5N1 virus was 6.72). This tool provides a strategy for the design of sensors and their application in complex biological samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Virus da Influenza A Subtipo H5N1 , Impressão Molecular , Nanopartículas , Luminescência , Polímeros Molecularmente Impressos , Nanopartículas/química , Aptâmeros de Nucleotídeos/química
17.
Anal Chim Acta ; 1232: 340455, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257740

RESUMO

Carcinoembryonic antigen (CEA), an acidic protein, is a characteristic antigen produced by the tumor of various cancers (eg, breast, cervical, rectal, lung, etc.). Therefore, the detection of cancer antigens is very important for the early diagnosis and treatment of cancer. In this study, a novel of "signal off" strategy for electrochemical immunosensor was developed to detect CEA. To this end, Prussian blue nanoparticles (PB NPs), an electroactive substance, were used as the immunological platform. In addition, CuO2@SiO2 nanocomposites, which release Cu2+ and H2O2 under acidic conditions, were synthesized. The generated Cu2+ can replace the high spin iron (FeIII) in PB NPs, which in turn reduces the oxidation peak current of PB NPs. Due to the peroxidase-like nature of PB NPs, they can react with self-generated H2O2 to generate hydroxyl radicals (·OH), which can further convert 4-chloro-1 naphthol (4-CN) into a non-conductive polymer that accumulates on the electrode surface, this leads to a further reduction in the electrical signal of the PB NPs. Moreover, the self-generated Cu2+ and H2O2 can reduce the introduction of exogenous substances and improve the detection accuracy. Square wave voltammetry (SWV) revealed that the electrical signal of PB NPs gradually decreased with increasing CEA concentration. In addition, the electrical signal of PB NPs exhibited a good linearity in the range from 0.01 pg mL-1 to 80 ng mL-1, where in the logarithm of CEA concentration and the detection limit was as low as 0.0032 pg mL-1.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antígeno Carcinoembrionário/química , Naftóis , Técnicas Eletroquímicas , Ouro/química , Nanopartículas Metálicas/química , Peróxido de Hidrogênio/química , Limite de Detecção , Compostos Férricos , Dióxido de Silício , Imunoensaio , Polímeros/química , Peroxidases , Ferro
18.
J Control Release ; 345: 744-754, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381274

RESUMO

Chemotherapy is a difficult treatment for cancer patients because of the low effective accumulation of chemo-drugs and their detrimental side effects. Nanoparticles have shown promise as a solution to these problems. However, the known differences in the porosity and vascularization of tumor vessels, and other factors, including the potential formation of a "protein crown," the short half-life time in circulation, and the low drug distribution, often limit their application. To address these problems, biomimetic nanoparticles coated with cell membranes have been developed and shown to have advantages such as prolonged circulation, high biocompatibility, and enhanced targeting abilities in drugs and nanoparticles, thus exhibiting good application prospects in cancer therapy for liver, lung, and melanoma cancers. Accordingly, we designed a PH-sensitive biomimetic nanodrug delivery system with a delicate "core-shell" structure based on red blood cell membranes. Briefly, core nanoparticles were synthesized by the self-assembly of natural amphoteric polymers, including hydrophilic carboxymethylcellulose sodium and hydrophobic stearic acid. For the shell structure, red blood cell membranes were modified using folic acid by a lipid tether (1,2-distearoyl-sn-glycero-3-phosphoethanolamine) to increase tumor-targeting ability, whereas polyethylene glycol was inserted to decrease lipid tether modification-induced potential sequestration by either the mononuclear phagocyte system or the reticuloendothelial system. Via a series of formulation optimizations, paclitaxel was packaged into the red blood membrane-based core-shell nanoparticles with an average size of 226.9 ± 2.75 nm and a negative Zeta potential of -14.5 ± 0.3 mV. More importantly, the examinations focusing on CD47, a representative red blood cell membrane protein, revealed not only the successful establishment of the membrane shell but also the right-side-out membrane orientation on our core-shell nanoparticles. Our nanodrug delivery system showed good biocompatibility and sensitivity to acidic tumor microenvironments while effectively prolonging the circulation time of paclitaxel and further enhancing its antitumor effects on epithelial malignancies, including liver, lung, and melanoma cancers. In particular, our nanodrug delivery system significantly alleviated paclitaxel-induced renal toxicity. Taken together, our findings highlight that the red blood membrane-based core-shell nanoparticle is a promising biomimetic nanodrug delivery system for functionally delivering chemotherapeutic drugs, and it has promise in clinical applications.


Assuntos
Melanoma , Nanopartículas , Biomimética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Eritrócitos , Humanos , Melanoma/tratamento farmacológico , Nanopartículas/química , Paclitaxel , Fosfatidiletanolaminas/química , Polímeros/química , Microambiente Tumoral
19.
Anal Methods ; 13(18): 2087-2091, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33912876

RESUMO

A compound with enrichment and SERS enhancement was successfully developed, which could rapidly adsorb X-gal hydrolysates from a liquid matrix in 5 minutes and further be used for SERS analysis with a detection limit of less than 1 × 10-9 mol L-1. This novel strategy will facilitate the development of an analytical approach for cellular senescence.


Assuntos
Senescência Celular , Nylons , Octoxinol , beta-Galactosidase
20.
ACS Appl Bio Mater ; 4(11): 7967-7978, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35006778

RESUMO

Inflammation plays an essential role in the human immune system, and anti-inflammatory compounds are important to promote health. However, the in vitro screening of these compounds is largely dependent on flat biology. Herein, we report our efforts in establishing a 3D inflammation murine macrophage model. Murine macrophage RAW 264.7 cells were cultured on poly(ε-caprolactone) (PCL) scaffolds fabricated through an electrohydrodynamic jetting 3D printer and their behavior were examined. Cells on PCL scaffolds showed a 3D shape and morphology with multilayers and a lower proliferation rate. Moreover, macrophages were not activated by scaffold material PCL and 3D microenvironment. The 3D cells showed greater sensitivity to lipopolysaccharide stimulation with higher production activity of nitric oxide (NO), nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2). Additionally, the 3D macrophage model showed lower drug sensitivity to commercial anti-inflammatory drugs including aspirin, ibuprofen, and dexamethasone, and natural flavones apigenin and luteolin with higher IC50 for NO production and lower iNOS and COX-2 inhibition efficacy. Overall, the 3D macrophage model showed promise for higher accurate screening of anti-inflammatory compounds. We developed, for the first time, a 3D macrophage model based on a 3D-printed PCL scaffold that provides an extracellular matrix environment for cells to grow in the 3D dimension. 3D-grown RAW 264.7 cells showed different sensitivities and responses to anti-inflammatory compounds from its 2D model. The 3D cells have lower sensitivity to both commercial and natural anti-inflammatory compounds. Consequently, our 3D macrophage model could be applied to screen anti-inflammatory compounds more accurately and thus holds great potential in next-generation drug screening applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2 , Promoção da Saúde , Humanos , Inflamação , Camundongos , Óxido Nítrico , Poliésteres , Células RAW 264.7 , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA