Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(1)2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30621308

RESUMO

Optic neuropathy is one of the leading causes of irreversible blindness caused by retinal ganglion cell (RGC) degeneration. The development of induced pluripotent stem cell (iPSC)-based therapy opens a therapeutic window for RGC degeneration, and tissue engineering may further promote the efficiency of differentiation process of iPSCs. The present study was designed to evaluate the effects of a novel biomimetic polybenzyl glutamate (PBG) scaffold on culturing iPSC-derived RGC progenitors. The iPSC-derived neural spheres cultured on PBG scaffold increased the differentiated retinal neurons and promoted the neurite outgrowth in the RGC progenitor layer. Additionally, iPSCs cultured on PBG scaffold formed the organoid-like structures compared to that of iPSCs cultured on cover glass within the same culture period. With RNA-seq, we found that cells of the PBG group were differentiated toward retinal lineage and may be related to the glutamate signaling pathway. Further ontological analysis and the gene network analysis showed that the differentially expressed genes between cells of the PBG group and the control group were mainly associated with neuronal differentiation, neuronal maturation, and more specifically, retinal differentiation and maturation. The novel electrospinning PBG scaffold is beneficial for culturing iPSC-derived RGC progenitors as well as retinal organoids. Cells cultured on PBG scaffold differentiate effectively and shorten the process of RGC differentiation compared to that of cells cultured on coverslip. The new culture system may be helpful in future disease modeling, pharmacological screening, autologous transplantation, as well as narrowing the gap to clinical application.


Assuntos
Materiais Biocompatíveis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Ácido Glutâmico/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Peptídeos/farmacologia , Células Ganglionares da Retina/citologia , Alicerces Teciduais/química , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Linhagem da Célula/efeitos dos fármacos , Células Cultivadas , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Camundongos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/ultraestrutura , Análise de Sequência de RNA , Transdução de Sinais/genética , Transcriptoma/genética
2.
Adv Sci (Weinh) ; 11(11): e2308635, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233151

RESUMO

Reactive oxygen species (ROS) have been recognized as prevalent contributors to the development of inner retinal injuries including optic neuropathies such as glaucoma, non-arteritic anterior ischemic optic neuropathy, traumatic optic neuropathy, and Leber hereditary optic neuropathy, among others. This underscores the pivotal significance of oxidative stress in the damage inflicted upon retinal tissue. To combat ROS-related challenges, this study focuses on creating an injectable and tissue-adhesive hydrogel with tailored antioxidant properties for retinal applications. GelCA, a gelatin-modified hydrogel with photo-crosslinkable and injectable properties, is developed. To enhance its antioxidant capabilities, curcumin-loaded polydopamine nanoparticles (Cur@PDA NPs) are incorporated into the GelCA matrix, resulting in a multifunctional nanocomposite hydrogel referred to as Cur@PDA@GelCA. This hydrogel exhibits excellent biocompatibility in both in vitro and in vivo assessments, along with enhanced tissue adhesion facilitated by NPs in an in vivo model. Importantly, Cur@PDA@GelCA demonstrates the potential to mitigate oxidative stress when administered via intravitreal injection in retinal injury models such as the optic nerve crush model. These findings underscore its promise in advancing retinal tissue engineering and providing an innovative strategy for acute neuroprotection in the context of inner retinal injuries.


Assuntos
Antioxidantes , Adesivos Teciduais , Nanogéis , Espécies Reativas de Oxigênio , Retina , Hidrogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA