Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(20): 8239-8243, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31050413

RESUMO

Rhodopsin, composed of opsin and isomeric retinal, acts as the primary photoreceptor by converting light into electric signals. Inspired by rhodopsin, we have fabricated a light-regulated ionic gate on the basis of the design of a graphene oxide (GO)-biomimetic DNA-nanochannel architecture. In this design, photoswitchable azobenzene (Azo)-DNA is introduced to the surface of porous anodic alumina (PAA) membrane. With modulation of the interaction between the GO blocker and Azo-DNA via flexibly regulating trans and cis states of Azo under the irradiation of visible and ultraviolet light, alternatively, the ionic gate is switched between ON and OFF states. This newly constructed ionic gate can possess high efficiency for the control of ion transport because of the high blocking property of GO and the rather tiny path within the barrier layer which are both first employed to fabricate ionic gate. We anticipate that this rhodopsin-like ionic gate may provide a new model and method for the investigation of ion channel, ion function, and ion quantity. In addition, because of the advantages of simple fabrication, good biocompatibility, and universality, this bioinspired system may have potential applications as optical sensors, in photoelectric transformation, and in controllable drug delivery.


Assuntos
Materiais Biomiméticos/química , DNA/química , Grafite/química , Transporte de Íons/efeitos dos fármacos , Óxido de Alumínio/química , Compostos Azo/química , Compostos Azo/efeitos da radiação , Materiais Biomiméticos/efeitos da radiação , DNA/efeitos da radiação , Técnicas Eletroquímicas , Grafite/efeitos da radiação , Transporte de Íons/efeitos da radiação , Membranas Artificiais , Rodopsina/química , Estereoisomerismo , Raios Ultravioleta
2.
Talanta ; 192: 325-330, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30348398

RESUMO

The analysis of exosomes, which shows an increasing potential as prognostic biomarkers for non-invasive cancer diagnosis, can reveal their biological functions and disease associations. Nevertheless, the development of a convenient and quantitative method for determination of exosomes is still challenging. Herein, a novel approach for exosome quantification using pH test paper is developed via HRP-mediated promotion of mussel-inspired surface engineering and reagent-free functionalization of urease molecules. Uerase can hydrolyse urea into ammonia and carbon dioxide, and simultaneously raise the pH value of the solution. By establishing the relationship between exosome recognition and the change of pH value of the sensing solution, we can directly employ the low-cost, widely used and commercially available pH test paper to quantitatively analyse exosomes. The pH-responsive bioassay enables sensitive detection of exosomes with a detection of limit down to 4.46 × 103 particles/µL and can be successfully applied for determination of exosomes in clinical specimens. The versatility and reliability of our sensing platform may open up opportunities towards paper-based diagnosis of cancer.


Assuntos
Bioensaio/métodos , Biomarcadores Tumorais/análise , Exossomos/química , Papel , Armoracia/enzimologia , Bioensaio/instrumentação , Canavalia/enzimologia , Dopamina/química , Exossomos/imunologia , Peroxidase do Rábano Silvestre/química , Humanos , Concentração de Íons de Hidrogênio , Indóis/síntese química , Indóis/química , Limite de Detecção , Células MCF-7 , Fenômenos Magnéticos , Nanopartículas/química , Neoplasias/diagnóstico , Polímeros/síntese química , Polímeros/química , Ureia/química , Urease/química
3.
ACS Nano ; 13(6): 7333-7344, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31180197

RESUMO

A DNA-based stimulus-responsive drug delivery system for synergetic cancer therapy has been developed. The system is built on a triplex-DNA nanoswitch capable of precisely responding to pH variations in the range of ∼5.0-7.0. In extracellular neutral pH space, the DNA nanoswitch keeps a linear conformation, immobilizing multiple therapeutics such as small molecules and antisense compounds simultaneously. Following targeted cancer cell uptake via endocytosis, the nanoswitch inside acidic intracellular compartments goes through a conformational change from linear to triplex, leading to smart release of the therapeutic combination. This stimuli-responsive drug delivery system does not rely on artificial responsive materials, making it biocompatible. Furthermore, it enables simultaneous delivery of multiple therapeutics for enhanced efficacy. Using tumor-bearing mouse models, we show efficient gene silencing and significant inhibition of tumor growth upon intravenous administration of the smart nanoswitch, providing opportunities for combinatorial cancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , DNA/química , Liberação Controlada de Fármacos , Nanopartículas/química , Polímeros Responsivos a Estímulos/química , Animais , Antineoplásicos/uso terapêutico , Aptâmeros de Nucleotídeos/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Neoplasias Experimentais/tratamento farmacológico
4.
Nat Commun ; 10(1): 2946, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270421

RESUMO

The capability to encapsulate designated live cells into a biologically and mechanically tunable polymer layer is in high demand. Here, an approach to weave functional DNA polymer cocoons has been proposed as an encapsulation method. By developing in situ DNA-oriented polymerization (isDOP), we demonstrate a localized, programmable, and biocompatible encapsulation approach to graft DNA polymers onto live cells. Further guided by two mutually aided enzymatic reactions, the grafted DNA polymers are assembled into DNA polymer cocoons at the cell surface. Therefore, the coating of bacteria, yeast, and mammalian cells has been achieved. The capabilities of this approach may offer significant opportunities to engineer cell surfaces and enable the precise manipulation of the encapsulated cells, such as encoding, handling, and sorting, for many biomedical applications.


Assuntos
Células Imobilizadas/citologia , DNA/química , Polímeros/química , Membrana Celular/metabolismo , Sobrevivência Celular , Células Imobilizadas/metabolismo , Humanos , Células MCF-7 , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA