Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(35): e2105571, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253092

RESUMO

The effectiveness of existing tissue-engineering cartilage (TEC) is known to be hampered by weak integration of biocompatibility, biodegradation, mechanical strength, and microenvironment supplies. The strategy of hydrogel-based TEC holds considerable promise in circumventing these problems. Herein, a non-toxic, biodegradable, and mechanically optimized double-network (DN) hydrogel consisting of polyethylene glycol (PEG) and kartogenin (KGN)-conjugated chitosan (CHI) is constructed using a simple soaking strategy. This PEG-CHI-KGN DN hydrogel possesses favorable architectures, suitable mechanics, remarkable cellular affinity, and sustained KGN release, which can facilitate the cartilage-specific genes expression and extracellular matrix secretion of peripheral blood-derived mesenchymal stem cells (PB-MSCs). Notably, after tracing the transplanted cells by detecting the rabbit sex-determining region Y-linked gene sequence, the allogeneic PB-MSCs are found to survive for even 3 months in the regenerated cartilage. Here, the long-term release of KGN is able to efficiently and persistently activate multiple genes and signaling pathways to promote the chondrogenesis, chondrocyte differentiation, and survival of PB-MSCs. Thus, the regenerated tissues exhibit well-matched histomorphology and biomechanical performance such as native cartilage. Consequently, it is believed this innovative work can expand the choice for developing the next generation of orthopedic implants in the loadbearing region of a living body.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Animais , Coelhos , Hidrogéis/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cartilagem/metabolismo , Transplante de Células-Tronco , Polietilenoglicóis/metabolismo
2.
Adv Mater ; 31(49): e1904341, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621958

RESUMO

Current approaches to fabrication of nSC composites for bone tissue engineering (BTE) have limited capacity to achieve uniform surface functionalization while replicating the complex architecture and bioactivity of native bone, compromising application of these nanocomposites for in situ bone regeneration. A robust biosilicification strategy is reported to impart a uniform and stable osteoinductive surface to porous collagen scaffolds. The resultant nSC composites possess a native-bone-like porous structure and a nanosilica coating. The osteoinductivity of the nSC scaffolds is strongly dependent on the surface roughness and silicon content in the silica coating. Notably, without the use of exogenous cells and growth factors (GFs), the nSC scaffolds induce successful repair of a critical-sized calvarium defect in a rabbit model. It is revealed that topographic and chemical cues presented by nSC scaffolds could synergistically activate multiple signaling pathways related to mesenchymal stem cell recruitment and bone regeneration. Thus, this facile surface biosilicification approach could be valuable by enabling production of BTE scaffolds with large sizes, complex porous structures, and varied osteoinductivity. The nanosilica-functionalized scaffolds can be implanted via a cell/GF-free, one-step surgery for in situ bone regeneration, thus demonstrating high potential for clinical translation in treatment of massive bone defects.


Assuntos
Regeneração Óssea , Colágeno/química , Nanoestruturas/química , Dióxido de Silício/química , Alicerces Teciduais/química , Animais , Materiais Biomiméticos/química , Biomimética , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Nanoestruturas/ultraestrutura , Osteogênese , Porosidade , Coelhos , Crânio/lesões , Crânio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA