Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(1): 244-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535390

RESUMO

The candidate phylum TM7 is globally distributed and often associated with human inflammatory mucosal diseases. Despite its prevalence, the TM7 phylum remains recalcitrant to cultivation, making it one of the most enigmatic phyla known. In this study, we cultivated a TM7 phylotype (TM7x) from the human oral cavity. This extremely small coccus (200-300 nm) has a distinctive lifestyle not previously observed in human-associated microbes. It is an obligate epibiont of an Actinomyces odontolyticus strain (XH001) yet also has a parasitic phase, thereby killing its host. This first completed genome (705 kb) for a human-associated TM7 phylotype revealed a complete lack of amino acid biosynthetic capacity. Comparative genomics analyses with uncultivated environmental TM7 assemblies show remarkable conserved gene synteny and only minimal gene loss/gain that may have occurred as TM7x adapted to conditions within the human host. Transcriptomic and metabolomic profiles provided the first indications, to our knowledge, that there is signaling interaction between TM7x and XH001. Furthermore, the induction of TNF-α production in macrophages by XH001 was repressed in the presence of TM7x, suggesting its potential immune suppression ability. Overall, our data provide intriguing insights into the uncultivability, pathogenicity, and unique lifestyle of this previously uncharacterized oral TM7 phylotype.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Genoma Bacteriano/genética , Parasitos/genética , Filogenia , Simbiose , Actinomyces , Animais , Bactérias/classificação , Bactérias/ultraestrutura , Especificidade de Hospedeiro , Humanos , Macrófagos/metabolismo , Dados de Sequência Molecular , Boca/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia , Transcriptoma/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
ACS Nano ; 2(1): 33-40, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19206545

RESUMO

Nanomaterials such as block copolymeric membranes provide a platform for both cellular interrogation and biological mimicry. Their biomimetic properties are based upon the innate possession of hydrophilic and hydrophobic units that enable their integration with a broad range of therapeutic materials. As such, they can be engineered for specific applications in nanomedicine, including controlled/localized drug delivery. Here we describe a method for the functionalization of the polymethyloxazoline-polydimethylsiloxane-polymethyloxazoline (PMOXA-PDMS-PMOXA) block copolymer with anti-inflammatory molecules to develop copolymer-therapeutic hybrids, effectively conferring biological functionality to a versatile synthetic nanomembrane matrix and creating a platform for an anti-inflammatory drug delivery system. Utilizing self-assembly and Langmuir-Blodgett deposition methods, we mixed copolymers with dexamethasone (Dex), an anti-inflammatory glucocorticoid receptor agonist. The successful mixing of the copolymer with the drug was confirmed by surface pressure isotherms and fluorescence microscopy. Furthermore, at 4 nm thick per layer, orders of magnitude thinner than conventional drug delivery coatings, these dexamethasone-copolymer mixtures (PolyDex) suppressed in vitro expression of the inflammatory cytokines/signaling elements interleukin 6 (IL-6), interleukin 12 (IL-12), tumor necrosis factor alpha (TNFalpha), inducible nitric oxide synthase (iNOS), and interferon gamma inducible protein (IP-10). Finally, PolyDex maintained its anti-inflammatory properties in vivo confirmed through punch biopsies with tissue imagery via hematoxylin/eosin and macrophage specific staining using CD11b. Thus, we demonstrated that PolyDex may be utilized as a localized, highly efficient drug-copolymer composite for active therapeutic delivery to confer anti-inflammatory protection or as a platform material for broad drug elution capabilities.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Polímeros/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Materiais Biocompatíveis/química , Linhagem Celular , Dexametasona/química , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA