Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 130023, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340929

RESUMO

Various water pollution issues pose a significant threat to human water safety. Magnetic polydopamine composites (MPCs), which can be separated by magnetic fields after the adsorption process, exhibit outstanding adsorption capacity and heterogeneous catalytic properties, making them promising materials for water treatment applications. In particular, by modifying the polydopamine (PDA) coating, MPCs can acquire enhanced high reactivity, antibacterial properties, and biocompatibility. This also provides an attractive platform for further fabrication of hybrid materials with specific adsorption, catalytic, antibacterial, and water-oil separation capabilities. To systematically provide the background knowledge and recent research advances in MPCs, this paper presents a critical review of MPCs for water treatment in terms of both structure and mechanisms of effect in applications. Firstly, the impact of different PDA positions within the composite structure is investigated to summarize the optimization of properties contributed by PDA when acting as the shell, core, or bridge. The roles of various secondary modifications of magnetic materials by PDA in addressing water pollution problems are explored. It is anticipated that this work will be a stimulus for further research and development of magnetic composite materials with real-world application potential.


Assuntos
Indóis , Polímeros , Purificação da Água , Humanos , Polímeros/química , Antibacterianos , Fenômenos Magnéticos
2.
Chemosphere ; 308(Pt 1): 136249, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064011

RESUMO

Magnetic nanoparticle materials which could be used to remove tetracycline were confined seriously due to their poor stability and unsatisfactory reusability. Here, we facilely prepared novel zeolitic imidazolate framework-8 (ZIF-8) functionalized magnetic nanoparticles (Fe3O4@PDA-ZIF-8) adsorbent utilizing polydopamine as a bond to establish a connection between zeolitic imidazolate framework-8 and Fe3O4, which could improve the stability of magnetic nanoparticles and enhance the tetracycline adsorption capacity simultaneously. The prepared nanocomposites were characterized and their TC adsorption abilities under various experiment conditions (contact time, TC initial concentration and pH values) were also investigated. Experimental results proved that the prepared adsorbent showed superior TC adsorption capacities (92.01 mg/g at pH = 7). Further, the adsorption mechanisms were comprehensively studied and the prepared adsorbent showed satisfactory stability and reusability during the cycle experiment. Altogether, our findings provided a feasible way to design and construct functional magnetic MOF materials for enhancing tetracycline adsorption from wastewater.


Assuntos
Nanopartículas de Magnetita , Poluentes Químicos da Água , Zeolitas , Adsorção , Antibacterianos/química , Indóis , Polímeros , Tetraciclina/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Zeolitas/química
3.
Sci Total Environ ; 810: 151182, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710406

RESUMO

Fenton-like catalysts represent a family of promising materials to degrade micropollutants from contaminated water. However, the practical applications of Fenton-like catalysts are mainly limited by low catalytic degradation efficiency and stability. Herein, for the first time, rapid fabrication of Ag-decorated Fe3O4/polydopamine (FPA) microspheres was achieved via the help of UV irradiation, and the designed FPA microspheres were employed as Fenton-like catalysts to degrade micropollutants. Results showed that UV irradiation could activate the generation of the polydopamine shell and accelerate the Ag deposition, which played a crucial role in the rapid synthesis of highly active and stable FPA catalysts. Relative to reported catalysts, these FPA microspheres exhibited outstanding catalytic degradation performance, achieving 94.38% removal of tetracycline within 60 min. This work will provide a convenient strategy in the sustainable and efficient purification of wastewater to improve the quality of human life.


Assuntos
Peróxido de Hidrogênio , Polímeros , Catálise , Humanos , Indóis
4.
Chemosphere ; 285: 131523, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34265702

RESUMO

This work reported the fast synthesis of magnetic polydopamine Au-Fenton catalyst (Fe3O4@PDA/Au) under UV irradiation at 365 nm. The microstructure of prepared nanocomposites was characterized by various techniques. The effects of several key factors (pH values, H2O2 content and TC concentration) of tetracycline (TC) degradation were evaluated. The results revealed that the TC and total organic carbon (TOC) removal rate reached up to 98.16% and 93.14% within 300 min under optimal conditions (pH 3, H2O2 80 µL, TC concentration 20 mg/L). Besides, HO radicals were generated during the Fenton-like degradation process and the plausible degradation mechanism was discussed. Moreover, Fe3O4@PDA/Au catalyst retained excellent catalytic capacity (TC removal rate 96.94% and TOC removal rate 87.69%) and exhibited fantastic stability after six cycles. Moreover, metal ions leaching was evaluated (0.023 mg/L). Altogether, the novel Fe3O4@PDA/Au Fenton-like catalyst is highly promising for wastewater management.


Assuntos
Peróxido de Hidrogênio , Tetraciclina , Catálise , Indóis , Polímeros
5.
Colloids Surf B Biointerfaces ; 181: 226-233, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31146246

RESUMO

Fenton technology has been proven an effective way to remove dyes from wastewater. However, the demanding pH of reaction condition restricted its wide application. In this study, we report a novel Fenton-like catalyst (Fe3O4@PDA-MnO2) facilely synthesized by polydopamine (PDA) coating and MnO2 depositing onto the surface of Fe3O4 nanoparticles. This method for preparing magnetic Fe3O4@PDA-MnO2 catalyst could avoid the agglomeration of MnO2 nanoparticles and make the catalyst collect easily from the solution. The resultant Fe3O4@PDA-MnO2 nanoparticles possess core-shell nanostructure. Fe3O4@PDA-MnO2 catalyst could cooperate with hydrogen peroxide to form a Fenton-like reagent for the removal of methylene blue (MB) and performed excellent catalytic activities towards MB, including high degradation efficiency of 97.36% after 240 min. Besides, Fe3O4@PDA-MnO2 can retain excellent reusability after 5 using-cycles. More importantly, the catalyst can be used in a wide pH range from 2 to 12 in Fenton systems, demonstrating that the degradation process is independent on pH which is different from most reported studies. Also, Fe3O4@PDA-MnO2 could still keep more than 75% removal efficiency of MB in industrial wastewater treatment application. Therefore, the synthesized Fe3O4@PDA-MnO2 would be a promising device for the removal of dyes from wastewater.


Assuntos
Indóis/química , Nanopartículas de Magnetita/química , Compostos de Manganês/química , Azul de Metileno/isolamento & purificação , Óxidos/química , Polímeros/química , Águas Residuárias/química , Catálise , Azul de Metileno/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA