Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(32): 19017-19025, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719130

RESUMO

To achieve the mission of personalized medicine, centering on delivering the right drug to the right patient at the right dose, therapeutic drug monitoring solutions are necessary. In that regard, wearable biosensing technologies, capable of tracking drug pharmacokinetics in noninvasively retrievable biofluids (e.g., sweat), play a critical role, because they can be deployed at a large scale to monitor the individuals' drug transcourse profiles (semi)continuously and longitudinally. To this end, voltammetry-based sensing modalities are suitable, as in principle they can detect and quantify electroactive drugs on the basis of the target's redox signature. However, the target's redox signature in complex biofluid matrices can be confounded by the immediate biofouling effects and distorted/buried by the interfering voltammetric responses of endogenous electroactive species. Here, we devise a wearable voltammetric sensor development strategy-centering on engineering the molecule-surface interactions-to simultaneously mitigate biofouling and create an "undistorted potential window" within which the target drug's voltammetric response is dominant and interference is eliminated. To inform its clinical utility, our strategy was adopted to track the temporal profile of circulating acetaminophen (a widely used analgesic and antipyretic) in saliva and sweat, using a surface-modified boron-doped diamond sensing interface (cross-validated with laboratory-based assays, R2 ∼ 0.94). Through integration of the engineered sensing interface within a custom-developed smartwatch, and augmentation with a dedicated analytical framework (for redox peak extraction), we realized a wearable solution to seamlessly render drug readouts with minute-level temporal resolution. Leveraging this solution, we demonstrated the pharmacokinetic correlation and significance of sweat readings.


Assuntos
Acetaminofen/análise , Monitoramento de Medicamentos/métodos , Saliva/química , Suor/química , Acetaminofen/administração & dosagem , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Monitoramento de Medicamentos/instrumentação , Humanos , Medicina de Precisão , Dispositivos Eletrônicos Vestíveis
2.
Lab Chip ; 20(22): 4205-4214, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33048069

RESUMO

Microchannels in hydrogels play an essential role in enabling a smart contact lens. However, microchannels have rarely been created in commercial hydrogel contact lenses due to their sensitivity to conventional microfabrication techniques. Here, we report the fabrication of microchannels in poly(2-hydroxyethyl methacrylate) (poly(HEMA)) hydrogels that are used in commercial contact lenses with a three-dimensional (3D) printed mold. We investigated the corresponding capillary flow behaviors in these microchannels. We observed different capillary flow regimes in these microchannels, depending on their hydration level. In particular, we found that a peristaltic pressure could reinstate flow in a dehydrated channel, indicating that the motion of eye-blinking may help tears flow in a microchannel-containing contact lens. Colorimetric pH and electrochemical Na+ sensing capabilities were demonstrated in these microchannels. This work paves the way for the development of microengineered poly(HEMA) hydrogels for various biomedical applications such as eye-care and wearable biosensing.


Assuntos
Lentes de Contato , Dispositivos Eletrônicos Vestíveis , Hidrogéis , Metacrilatos , Poliaminas , Poli-Hidroxietil Metacrilato/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA