Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioresour Technol ; 390: 129846, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820970

RESUMO

Tar problem seriously hinders the development of biomass gasification. The tar formation of biomass is greatly influenced by cellulose. In this work, PY-GC/MS was employed for providing a precise insight into the formation of primary and secondary products, and a tar contribution index was introduced to evaluate the potential of tar formation from different origins. Combined with statistical analysis and corroboration by DFT analysis, key intermediates for tar formation are recognized, and corresponding influence is confirmed. A new framework from cellulose to tar was built. The secondary reaction acts a more important role for tar formation. The aromatic precursors and high-activity small-molecular gases are two key compounds responding to tar formation, and the existence of high-activity small-molecular gases could significantly reduce the energy barrier during tar formation. For furans, the energy barrier can be reduced from 100.2 kcal/mol to 74.2 kcal/mol in the presence of ethylene.


Assuntos
Celulose , Gases , Biomassa
2.
J Hazard Mater ; 424(Pt B): 127460, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653868

RESUMO

Plastic wastes have posed serious threats to the environment, including decrease of soil nutrient effectiveness and agricultural production as well as emerge of ecological instability. Fuel conversion from plastic waste is regarded as a promising strategy for its disposal and energy utilization. Plastic wastes can be converted into target fuels by adjusting cracking of chemical bonds. Currently, numerous technologies regarding fuel conversion from plastic wastes have been reported, including conventional pyrolysis, novel heat treatment and advanced oxidation. However, systematic summary and comparative analysis of different technologies are still scarcely reported. In this review, fuel conversion from plastic wastes was summarized comprehensively, highlighting novel heat treatment and advanced oxidation technologies reported in recent years. Furthermore, the superiority and drawbacks of each technology were analyzed, and future prospects of technology application were proposed. With lower reaction temperature and higher-value fuel, novel heat treatment of plastics is more popular than traditional one. Advanced oxidation can be controlled to convert plastics into fuels under room temperature and pressure, guiding the new normal in energy utilization of plastic wastes. This review aims to provide inspiration for energy utilization of solid waste, addressing the issues of white pollution and energy shortage.


Assuntos
Plásticos , Resíduos Sólidos , Temperatura Alta , Pirólise , Temperatura
3.
Bioresour Technol ; 338: 125560, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274578

RESUMO

Due to rapid deactivation of catalysts, the effective conversion of biomass with oxygen-rich and hydrogen-deficient characteristics to transportation fuels and high-valued chemicals via catalytic pyrolysis remains a challenge for commercialization. Hydrogen-rich plastic is used as feedstock co-fed with biomass to improve the catalytic pyrolysis process. The present work aims to investigate the co-pyrolysis process of cellulose and polyethylene (PE) over MgO by TG combined with photoionization time-of-flight mass spectrometry (PI-TOF-MS), which features on-line detection of catalytic pyrolysis products in real time. The MgO catalyst could improve the pyrolysis of cellulose and enhance the CC bond breaking of PE, respectively. During catalytic co-pyrolysis, the yields from olefins and furan as well as its derivatives can be enhanced obviously. Further, the formation of additional aromatics can be observed due to the Diels-Alder reaction. This work shows TG coupled to PI-TOF-MS is a powerful setup to study and optimize catalytic co-pyrolysis process.


Assuntos
Óxido de Magnésio , Pirólise , Biomassa , Catálise , Celulose , Temperatura Alta , Espectrometria de Massas , Polietileno
4.
Sci Total Environ ; 726: 138634, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32315862

RESUMO

Considering the advantages (e.g. agglomeration mitigation) and disadvantages (e.g. inorganic species catalysis removal) of biomass demineralization, it is valuable to investigate its effects on gasification performance, thus assessing its necessity prior to performing gasification. To accomplish this, corn straw (CS) was demineralized to different degrees with H2O and HCl, respectively. H2O and HCl demineralization behaved different abilities to inorganic species removal. Cellulose and hemicelluloses content decreased, while lignin content increased, especially with HCl demineralization. The experiments were investigated by using a bench-scale downdraft fixed-bed gasifier at 600-800 °C and were further analyzed via thermogravimetric coupled with Fourier transform infrared spectrometry. Demineralization demonstrated a positive effect on gasification at lower temperatures (600-700 °C) for a dominant effect of lignin content and an insignificant effect of inorganic species removal. However, the catalysis of inorganic species increased as the temperature increased, resulting in the highest H2 (11.30 vol%) and CO (16.02 vol%) production of raw CS compared to demineralized CS at 800 °C. Inorganic species had a dual positive effect on CO generation, promoting both CO2 and char generation leading to a higher CO yield following Boundouard reaction, and increasing the formation of active intermediates thus producing more CO. These effects enhanced when the gasification temperature increased. Additionally, inorganic species catalyzed the aromatic rings rearrangement to generate more H2O, thus driving the endothermic Primary water-gas to produce H2. This was also positively correlated with gasification temperature. Therefore, raw CS demonstrated higher H2 and CO production than demineralized CS at a higher gasification temperature. Moreover, the promotion effect of inorganic species on thermal devolatilization of methoxyl groups and Methanation reaction led to the higher CH4 production of raw CS. This research clarifies the effects of biomass demineralization on its gasification and suggests the potential application.


Assuntos
Temperatura Alta , Lignina , Biomassa , Catálise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA